Magnetic spherical pendulum

Download
2003
Yıldırım, Selma
The magnetic spherical pendulum is a mechanical system consisting of a pendulum whereof the bob is electrically charged, moving under the influence of gravitation and the magnetic field induced by a magnetic monopole deposited at the origin. Physically not directly realizable, it turns out to be equivalent to a reduction of the Lagrange top. This work is essentially the logbook of our attempts at understanding the simplest contemporary approaches to the magnetic spherical pendulum.

Suggestions

Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
A Numerical approach for the solutions of fluid dynamics problems in the presence of magnetic field
Oğlakkaya, Fatma Sidre; Bozkaya, Canan; Department of Mathematics (2018)
This thesis is conducted to investigate numerically the two-dimensional steady or unsteady, laminar flow of viscous, incompressible and electrically conducting fluids in complex geometries subject to either uniform inclined magnetic field or nodal magnetic sources. Specifically, the hydromagnetic natural/mixed convection of either conventional fluid or water-based nanofluid flow and the heat transfer are considered in irregular enclosures with wavy walls. The equations governing the steady magnetohydrodynam...
Implementation and comparison of reconstruction algorithms for magnetic resonance-electric impedance tomography (mr-eit)
Martin Lorca, Dario; Eyüboğlu, Behçet Murat; Department of Biomedical Engineering (2007)
In magnetic resonance electrical impedance tomography (MR-EIT), crosssectional images of a conductivity distribution are reconstructed. When current is injected to a conductor, it generates a magnetic field, which can be measured by a magnetic resonance imaging (MRI) scanner. MR-EIT reconstruction algorithms can be grouped into two: current density based reconstruction algorithms (Type-I) and magnetic flux density based reconstruction algorithms (Type-II). The aim of this study is to implement a series of r...
Performance evaluation of magnetic flux density based magnetic resonance electrical impedance tomography reconstruction algorithms
Eker, Gökhan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2009)
Magnetic Resonance Electrical Impedance Tomography (MREIT) reconstructs images of electrical conductivity distribution based on magnetic flux density (B) measurements. Magnetic flux density is generated by an externally applied current on the object and measured by a Magnetic Resonance Imaging (MRI) scanner. With the measured data and peripheral voltage measurements, the conductivity distribution of the object can be reconstructed. There are two types of reconstruction algorithms. First type uses current de...
Tight binding investigation of graphene nanostructures under magnetic field
Yalçın, Fırat; Toffoli, Hande; Department of Physics (2019)
Electrons moving under the effects of a two dimensional periodic potential and a magnetic field perpendicular to this two dimensional plane has been the focus of many different studies for a long time. The interplay between the two length scales in this problem, lattice constant and the characteristic magnetic length, results in interesting phenomena such as the Hofstadter's butterfly. The bulk of the studies done so far has focused on uniform magnetic fields. The only requirement for the vector potential i...
Citation Formats
S. Yıldırım, “Magnetic spherical pendulum,” M.S. - Master of Science, Middle East Technical University, 2003.