Holistic face recognition by dimension reduction

Download
2003
Gül, Ahmet Bahtiyar
Face recognition is a popular research area where there are different approaches studied in the literature. In this thesis, a holistic Principal Component Analysis (PCA) based method, namely Eigenface method is studied in detail and three of the methods based on the Eigenface method are compared. These are the Bayesian PCA where Bayesian classifier is applied after dimension reduction with PCA, the Subspace Linear Discriminant Analysis (LDA) where LDA is applied after PCA and Eigenface where Nearest Mean Classifier applied after PCA. All the three methods are implemented on the Olivetti Research Laboratory (ORL) face database, the Face Recognition Technology (FERET) database and the CNN-TURK Speakers face database. The results are compared with respect to the effects of changes in illumination, pose and aging. Simulation results show that Subspace LDA and Bayesian PCA perform slightly well with respect to PCA under changes in pose; however, even Subspace LDA and Bayesian PCA do not perform well under changes in illumination and aging although they perform better than PCA.

Suggestions

A comparison of subspace based face recognition methods
Gönder, Özkan; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2004)
Different approaches to the face recognition are studied in this thesis. These approaches are PCA (Eigenface), Kernel Eigenface and Fisher LDA. Principal component analysis extracts the most important information contained in the face to construct a computational model that best describes the face. In Eigenface approach, variation between the face images are described by using a set of characteristic face images in order to find out the eigenvectors (Eigenfaces) of the covariance matrix of the distribution,...
Investigation of the Effect of Face Regions on Local Shape Descriptor Based 3D Face Recognition
İNAN, TOLGA; Halıcı, Uğur (2013-04-26)
In this study, the effect of face regions on local shape descriptor based 3D face recognition was investigated. Our approach starts with calculation of the SIFT descriptors on the shape maps of the 3D faces. In the next phase, SIFT descriptors in the selected regions are concatenated to form feature vectors. Then these feature vectors are fed into linear discriminant analysis (LDA) for face recognition. In this study, faces are segmented into 47 regions and the descriptors in one or more regions are concate...
3D face recognition with local shape descriptors
İnan, Tolga; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2011)
This thesis represents two approaches for three dimensional face recognition. In the first approach, a generic face model is fitted to human face. Local shape descriptors are located on the nodes of generic model mesh. Discriminative local shape descriptors on the nodes are selected and fed as input into the face recognition system. In the second approach, local shape descriptors which are uniformly distributed across the face are calculated. Among the calculated shape descriptors that are discriminative fo...
The Effect of Cinematherapy on Perfectionism and Related Schemas
Aka, Basak Tuerkueler; Gençöz, Faruk (2010-06-01)
This study aimed to reveal the effect of cinematherapy on perfectionism and related early maladaptive schemas and investigate the contribution of participants' identification with the film on this process. Accordingly, demographic information form, Multidimensional Perfectionism Scale (Hewitt & Flett, 1991a; 1991b), three Early Maladaptive Schema (Emotional Inhibition, Unrelenting Standards-Hypercriticalness, Approval. Seeking-Recognition Seeking) items from Young Schema Questionnaire (Young & Brown 2001), ...
Face recognition using Eigenfaces and neural networks
Akalın, Volkan; Severcan, Mete; Department of Electrical and Electronics Engineering (2003)
A face authentication system based on principal component analysis and neural networks is developed in this thesis. The system consists of three stages; preprocessing, principal component analysis, and recognition. In preprocessing stage, normalization illumination, and head orientation were done. Principal component analysis is applied to find the aspects of face which are important for identification. Eigenvectors and eigenfaces are calculated from the initial face image set. New faces are projected onto ...
Citation Formats
A. B. Gül, “Holistic face recognition by dimension reduction,” M.S. - Master of Science, Middle East Technical University, 2003.