Hide/Show Apps

Identification of periodic autoregressive moving average models

Akgün, Burçin
In this thesis, identification of periodically varying orders of univariate Periodic Autoregressive Moving-Average (PARMA) processes is mainly studied. The identification of the varying orders of PARMA process is carried out by generalizing the well-known Box-Jenkins techniques to a seasonwise manner. The identification of pure periodic moving-average (PMA) and pure periodic autoregressive (PAR) models are considered only. For PARMA model identification, the Periodic Autocorrelation Function (PeACF) and Periodic Partial Autocorrelation Function (PePACF), which play the same role as their ARMA counterparts, are employed. For parameter estimation, which is considered only to refine model identification, the conditional least squares estimation (LSE) method is used which is applicable to PAR models. Estimation becomes very complicated, difficult and may give unsatisfactory results when a moving-average (MA) component exists in the model. On account of overcoming this difficulty, seasons following PMA processes are tried to be modeled as PAR processes with reasonable orders in order to employ LSE. Diagnostic checking, through residuals of the fitted model, is also performed stating its reasons and methods. The last part of the study demonstrates application of identification techniques through analysis of two seasonal hydrologic time series, which consist of average monthly streamflows. For this purpose, computer programs were developed specially for PARMA model identification.