Construction of a choline oxidase biosensor

Download
2003
Yücel, Deniz
Choline is indispensable for a number of fundamental processes in the body. Besides being the precursor of the acetylcholine, an important neurotransmitter, choline is found in the cell membrane structure combining with fatty acids, phosphate and glycerol. Its deficiency may result in nervous system disorders, fatty acid build up in the liver, along with increased cholesterol levels, high blood pressure and memory loss. Thus, rapid detection methods are required for the determination of choline in biological fluids.In this study a choline oxidase biosensor was constructed for the determination of choline. During construction of the biosensor, glucose oxidase was used as a model enzyme, before choline oxidase used. The Teflon (PTFE) membrane of the oxygen electrode was grafted with 2-hydroxyethyl methacrylate (HEMA, 15%, v/v) in the presence of ferrous ammonium sulphate (FAS, 0.1%, w/v) by gamma irradiation and ethyleneglycol dimethacrylate (EGDMA, 0.15 %, v/v) was used as a crosslinker in a series of membranes. HEMA-grafted membranes were activated with epichlorohydrin or glutaraldehyde to maintain covalent immobilization of enzyme. The enzyme activity was measured with an oxygen electrode unit based on oxygen consumption upon substrate addition. Membranes were characterized in terms of grafting conditions and mechanical properties. Membranes, gamma irradiated in a solution of HEMA (15%) and FAS (0.1%) for 24 h, were found to be suitable for use in the further studies. Mechanical test results revealed that HEMA grafting made Teflon membrane more flexible and the presence of EGDMA made the grafted membrane stiffer. During optimization stage, it was found that the immobilized enzyme amount was not sufficient to obtain enzyme activity. Thus, the membrane preparation stage was modified to obtain thinner membranes. The immobilized glucose oxidase and choline oxidase contents on thin HEMA grafted membranes were determined by Bradford and Lowry methods. The influence of EGDMA presence and the epichlorohydrin activation duration on enzyme activity studies revealed that the membrane should be prepared in the absence of EGDMA and 30 min activation duration is appropriate for epichlorohydrin coupling. The study on the influence of membrane activation procedures revealed that the membranes activated with glutaraldehyde had a higher specific activity than the membranes activated with epichlorohydrin. Upon stretching membrane on the electrode directly rather than placing in the sample unit, the response of the enzyme immobilized sensor improved with high specific activity. The optimum choline oxidase concentration was found to be 2 mg/mL considering the effect of immobilization concentration on enzyme activity. With the choline oxidase biosensor, the linear working range was determined as 0.052-0.348 mM, with a 40 ± 5 uM minimum detection limit. The response of the sensor decreased linearly upon successive measurements.

Suggestions

Construction of a choline biosensor through enzyme immobilization on a poly(2-hydroxyethyl methacrylate)-grafted Teflon film
Yucel, Deniz; Ozer, Nazmi; Hasırcı, Vasıf Nejat (2007-06-05)
An amperometric choline biosensor was constructed by immobilizing choline oxidase (ChO) on poly(2-hydroxyethyl methacrylate) (PHEMA)-grafted Teflon (polytetrafluoroethylene, PTFE) film. Grafting was achieved by gamma irradiation. PHEMA-grafted Teflon films were activated with epichlorohydrin or glutaraldehyde to achieve covalent immobilization of enzyme onto the film. To decrease the diffusional barrier caused by the enzyme-immobilized film, the film was stretched directly on the electrode. The PHEMA-grafte...
Construction of an acetylcholinesterase-choline oxidase biosensor for aldicarb determination
Kok, FN; Bozoglu, F; Hasırcı, Vasıf Nejat (2002-06-01)
In this study, acetylcholinesterase and choline oxidase were co-immobilized on poly(2-hydroxyethyl methacrylate) membranes and the change in oxygen consumption upon aldicarb introduction was measured. Immobilization of the enzymes was achieved either by entrapment or by surface attachment via a hybrid immobilization method including epichlorohydrin and Cibacron Blue F36A activation. Immobilized enzymes had a long-storage stability (only 15% activity decrease in 2 months in wet storage and no activity loss i...
INVESTIGATION OF THE PERMEABILITY OF THE CELL MEMBRANE FOR DIFFERENT CRYOPROTECTANT AGENTS IN A CONTINUOUS THERMO-FLUIDIC MICRO-CHANNEL SYSTEM
Hatiboğlu, Anıl; Külah, Haluk; Önel, Selis; Department of Micro and Nanotechnology (2021-9-13)
Modeling cell membrane permeability in different solutions is a critical requirement in controlling the response of cells during preconcentration processes in biotechnological applications, such as drug delivery, fluorescence imaging, and cryopreservation . Current multi-step methods employed in loading cells with high concentrations of cryoprotectant agents (CPAs) prior to cryopreservation for long term storage affect cell viability as a result of extended exposure times associated with these methods. One ...
Production and biochemical characterization of polyphenol oxidase from thermomyces lanuginosus
Astarcı, Erhan; Bakır, Ufuk; Ögel, Zümrüt B.; Department of Biotechnology (2003)
Polyphenol oxidases are enzymes that catalyze the oxidation of certain phenolic substrates to quinones in the presence of molecular oxygen. Polyphenol oxidases are widely used in several applications. In food industry, they are used for enhancement of flavor in coffee, tea and cocoa production, and determination of food quality. In medicine, they have several uses in treatments of Parkinson̕s disease, phenlyketonurea and leukemia. In wastewater treatment, they are used for the removal of phenolic pollutants...
Development of sandwich type nucleic acid array platform for the detection of micrornas in breast cancer
Atılgan, Seren; Öktem, Hüseyin Avni; Department of Biology (2014)
MicroRNAs are small non-coding RNAs that are involved in important regulatory pathways such as differentiation, development, metabolism, cell proliferation, and cell death. Several recent research show that deregulated expression of miRNAs has crucial roles in disease pathologies, mainly in cancer. Therefore, it is likely that the usage of miRNAs as diagnostic and prognostic biomarkers in patients and the development of various techniques for the detection of microRNA in clinical research will become widesp...
Citation Formats
D. Yücel, “Construction of a choline oxidase biosensor,” M.S. - Master of Science, Middle East Technical University, 2003.