Impacts of soil-structure interaction on the fundamental period of shear wall dominant buildings

Download
2006
Derinöz, Okan
In many seismic design codes and provisions, such as Uniform Building Code and Turkish Seismic Code, prediction of fundamental period of shear-wall dominant buildings, constructed by tunnel form technique, to compute the anticipated seismic forces is achieved by empirical equations considering the height of the building and ratio of effective shear-wall area to first floor area as the primary predictor parameters. However, experimental and analytical studies have collectively indicated that these empirical formulas are incapable of predicting fundamental period of shear-wall dominant buildings, and consequently result in erroneous computation of design forces. To compensate for this deficiency, an effective yet simple formula has recently been developed by Balkaya and Kalkan (2004), and tested against the data from ambient surveys on existing shear-wall dominant buildings. In this study, previously developed predictive equation is modified to include the effects of soil-structure interaction on the fundamental period. For that purpose, 140 shear-wall dominant buildings having a variety of plans, heights and wall-configurations were re-analyzed for four different soil conditions classified according to NEHRP. The soil effects on the foundation were represented by the translational and rotational springs, and their rigidities were evaluated from foundation size and elastic uniform compressibility of soil. Based on the comprehensive study conducted, improved prediction of fundamental period is achieved. The error in predictions on average is about 15 percent, and lending further credibility to modified formula considering soil-structure interaction to be used in engineering practice.

Suggestions

Implementation of physical boundary conditions into computational domain in modelling of oscillatory bottom boundary layers
Tiğrek, Şahnaz; Yılmaz, Bilgi (Wiley, 2010-11-30)
This paper discusses the importance of realistic implementation of the physical boundary conditions into computational domain for the simulation of the oscillatory turbulent boundary layer flow over smooth and rough flat beds. A mathematical model composed of the Reynolds averaged Navier-Stokes equation, turbulent kinetic energy (k) and dissipation rate of the turbulent kinetic energy (epsilon) has been developed. Control-volume approach is used to discretize the governing equations to facilitate the numeri...
Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme
Bozkaya, Canan; Tezer, Münevver (Wiley, 2006-06-20)
A numerical scheme which is a combination of the dual reciprocity boundary element method (DRBEM) and the differential quadrature method (DQM), is proposed for the solution of unsteady magnetohydro-dynamic (MHD) flow problem in a rectangular duct with insulating walls. The coupled MHD equations in velocity and induced magnetic field are transformed first into the decoupled time-dependent convection-diffusion-type equations. These equations are solved by using DRBEM which treats the time and the space deriva...
Natural periods of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-03-01)
in most seismic building codes, the design base acceleration is computed using the natural period of vibration of the structure. Design specifications provide empirical formula to estimate the fundamental natural period of a system. In this study a class of steel plate shear walls, that have uniform properties through their height, was considered. The fundamental natural periods of this class of structures were determined using three dimensional geometrically linear finite element analyses and were compared...
Effect of Shear Wall Area to Floor Area Ratio on the Seismic Behavior of Reinforced Concrete Buildings
Burak Bakır, Burcu (American Society of Civil Engineers (ASCE), 2013-11-01)
An analytical study is performed to evaluate the effect of shear wall area to floor area ratio on the seismic behavior of midrise RC structures. For this purpose, 24 midrise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17% in both directions are generated. Then, the behavior of these building models under earthquake loading is examined by carrying out nonlinear time history analyses. In the analyses, seven different ground motion records are applied to th...
Response parameters that control the service, safety and collapse performances of a 253 m tall concrete core wall building in Istanbul
Budak, Erhan; Sucuoğlu, Haluk; Çelik, Ozan Cem (2022-10-01)
Seismic performance of a 253 m tall reinforced concrete core wall building constructed in Istanbul, designed according to performance-based seismic design principles, is assessed for determining the response parameters that control the serviceability, safety and collapse performance limit states. Serviceability performance is evaluated under the 50-year wind and 43-year earthquake whereas safety performance is assessed under the 2475-year earthquake. Collapse performance is elaborated through incremental dy...
Citation Formats
O. Derinöz, “Impacts of soil-structure interaction on the fundamental period of shear wall dominant buildings,” M.S. - Master of Science, Middle East Technical University, 2006.