Production of titanium diboride

Bilgi, Eda
Titanium diboride was produced both by volume combustion synthesis (VCS) and by mechanochemical synthesis through the reaction of TiO2, B2O3 and metallic Mg. Reaction products were expected to be composed of TiB2 and MgO. However, side products such as Mg2TiO4, Mg3B2O6, MgB2 and TiN were also present in the products obtained by volume combustion synthesis. Formation of TiN could be prevented by conducting the volume combustion synthesis under argon atmosphere. Mg2TiO4 did not form when 40% excess Mg was used. Wet ball milling of the products before leaching was found to be effective in removal of Mg3B2O6 during leaching in 1M HCl. When stoichiometric starting mixtures were used, all of the side products could be removed after wet ball milling in ethanol and leaching in 5 M HCl. Thus, pure TiB2 was obtained with a molar yield of 30%. Pure TiB2 could also be obtained at a molar yield of 45.6% by hot leaching of VCS products at 75oC in 5 M HCl, omitting the wet ball milling step. By mechanochemical processing, products containing only TiB2 and MgO were obtained after 15 hours of ball milling. Leaching in 0.5 M HCl for 3 minutes was found to be sufficient for elimination of MgO. Molar yield of TiB2 was 89.6%, much higher than that of TiB2 produced by volume combustion synthesis. According to scanning electron microscope analyses, produced TiB2 had average particle size of 0.27±0.08 μm.
Citation Formats
E. Bilgi, “Production of titanium diboride,” M.S. - Master of Science, Middle East Technical University, 2007.