Development of an electronic attack (EA) system in multi‐target tracking

Download
2007
Türkçü, Özlem
In this study, an expert system based EA and tracking system is developed and the performances of these systems are optimized. Tracking system consists of a monopulse tracking radar and a Multiple Hypothesis Tracking (MHT) algorithm. MHT is modelled as a measurement‐oriented approach, which is capable of initiating tracks. As each measurement is received, probabilities are calculated for the hypotheses and target states are estimated using a Kalman filter. Range Gate Pull-Off (RGPO) is selected as an EA technique to be developed because it is accepted to be the primary deception technique employed against tracking radar. Two modes of RGPO technique; linear and parabolic, according to time delay controller are modelled. Genetic Algorithm (GA) Toolbox of MATLAB is used for the optimization of these systems over some predetermined scenarios. It is observed that the performance of the tracking radar system is improved significantly and successful tracking is achieved over all given scenarios, even for closely spaced targets. RGPO models are developed against this improved tracking performance and deception of tracking radar is succeeded for all given target models.

Suggestions

Development of an Electronic Attack (EA) System in Multi-Target Tracking
Tuerkcue, Oezlem; Leblebicioğlu, Mehmet Kemal (2008-01-01)
In this study, an expert system is developed for an electronic attack (EA) and tracking system and performance of this system is optimized. Tracking system consists of a monopulse tracking radar and Multiple Hypothesis Tracking (MHT) algorithm. The performance of this system is optimized over given multi-target scenarios. Range gate pull-off (RGPO), which is accepted to be the primary deception technique employed against tracking radar is selected as an EA technique to be developed and the performance of th...
Implementation and performance evaluation of a three antenna direction finding system
Arslan, Ömer Çağrı; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2009)
State of the art direction finding (DF) systems usually have several antennas in order to increase accuracy and robustness to certain factors. In this thesis, a three antenna DF system is built and evaluated. While more antennas give better DF performance, a three antenna system is useful for system simplicity and many of the problems in DF systems can be observed and evaluated easily. This system can be used for both azimuth and elevation direction of arrival (DOA) estimation. The system is composed of thr...
Computation of radar cross sections of complex targets by shooting and bouncing ray method
Özgün, Salim; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2009)
In this study, a MATLAB® code based on the Shooting and Bouncing Ray (SBR) algorithm is developed to compute the Radar Cross Section (RCS) of complex targets. SBR is based on ray tracing and combine Geometric Optics (GO) and Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The presented algorithm is examined in two parts; the first part addresses a new aperture selection strategy named as “conformal aperture”, which is proposed and formulated to increase the performance of the cod...
Doppler radar data processing and classification
Aygar, Alper; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
In this thesis, improving the performance of the automatic recognition of the Doppler radar targets is studied. The radar used in this study is a ground-surveillance doppler radar. Target types are car, truck, bus, tank, helicopter, moving man and running man. The input of this thesis is the output of the real doppler radar signals which are normalized and preprocessed (TRP vectors: Target Recognition Pattern vectors) in the doctorate thesis by Erdogan (2002). TRP vectors are normalized and homogenized dopp...
Improvements in DOA estimation by array interpolation in non-uniform linear arrays
Yaşar, Temel Kaya; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2006)
In this thesis a new approach is proposed for non-uniform linear arrays (NLA) which employs conventional subspace methods to improve the direction of arrival (DOA) estimation performance. Uniform linear arrays (ULA) are composed of evenly spaced sensor elements located on a straight line. ULA's covariance matrix have a Vandermonde matrix structure, which is required by fast subspace DOA estimation algorithms. NLA differ from ULA only by some missing sensor elements. These missing elements cause some gaps in...
Citation Formats
Ö. Türkçü, “Development of an electronic attack (EA) system in multi‐target tracking,” M.S. - Master of Science, Middle East Technical University, 2007.