Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Development of sol-gel derived hydroxyapatite-titania coatings
Download
index.pdf
Date
2008
Author
Ün, Nusret Serhat
Metadata
Show full item record
Item Usage Stats
1
views
13
downloads
A processing route for development of hydroxyapatite (Ca10(PO4)6(OH)2 or HAp)-titania (TiO2) hybrid coatings on titanium alloy (Ti6Al4V) has been established. HAp powders of different size and morphology were synthesized by aqueous precipitation techniques using different precursor couples and XRD, SEM and FTIR were performed for complete characterization. Hybrid coatings were then prepared via sol-gel by incorporating presynthesized HAp powders into a titanium-alkoxide dip coating solution. Titania network is formed by hydrolysis and condensation of Ti-isopropoxide (Ti[OCH(CH3)2]4) based sols. The effect of titania sol formulation, specifically the effect of organic solvents on the microstructure of the dip coated films calcined at 500 ºC has been investigated. The coatings exhibit higher tendency for cracking when a high vapor pressure solvent, such as ethanol (C2H5OH) is used causing development of higher macroscopic stresses during evaporation of the sol. Titania sol formulations replacing the solvent with n-propanol (CH3(CH2)2OH) and acetly-acetone (C5H8O) combinations enhanced the microstructural integrity of the coating during evaporation and calcination treatments. Sol-gel processing parameters such as multilayer coating application and withdrawal rate can be employed to change the titania thickness in the range of 0.120 - 1.1 microns and to control the microstructure of HAp-titania hybrid coatings. Slower withdraw rates and multi-layer dip coating lead to coatings more vulnerable to cracking. A high calcination temperature in the range of 400 ºC-600 ºC lead to more cracking due to combined effect of densification originated stresses and thermal stresses upon cooling.
Subject Keywords
Metallurgy.
,
Biochemistry.
URI
http://etd.lib.metu.edu.tr/upload/12609449/index.pdf
https://hdl.handle.net/11511/17653
Collections
Graduate School of Natural and Applied Sciences, Thesis