Finite element analysis of a micro satellite structure under vibration induced loads during launch

Download
2008
Ontaç, Suat
This study mainly covers the finite element analysis of a micro satellite structure by considering the vibration effects at the time interval from the launching to the Earth’s orbit landing. Micro-satellites have a great importance in the satellite industry and several developing countries deal with micro-satellite design and production. Turkey is one of these countries by conducting new satellite projects. RASAT project is one the continuing micro-satellite project, which has being developed by TÜBİTAK Space Technologies Research Institute. In this thesis, the RASAT satellite is taken as the model for the study. On this model, many mechanical design studies which are performed according to the specified requirements and constraints are verified by finite element analyses. These analyses cover all the essential vibration loads during launching. In the study, firstly, a finite element model of RASAT is prepared. Then, the essential analyses are performed according to the specifications required by the launchers. In the analyses, commercially available finite element software is used. Finally all the results obtained from the finite element analyses are compared with the predefined requirements and constraints. The results show that the structural design verification regarding the reliability of the structure for the desired mission has been successfully completed.

Suggestions

Analysis of high frequency behavior of plate and beam structures by statistical energy analysis method
Yılmazel, Canan; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2004)
Statistical Energy Analysis (SEA) is one of the methods in literature to estimate high frequency vibrations. The inputs required for the SEA power balance equations are damping and coupling loss factors, input powers to the subsystems. In this study, the coupling loss factors are derived for two and three plates joined with a stiffener system. Simple formulas given in the literature for coupling loss factors of basic junctions are not used and the factors are calculated from the expressions derived in this ...
Computer aided engineering of an unmanned underwater vehicle
Cevheri, Necmettin; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Hydrodynamic and thermal analyses performed during the conceptual design of an unmanned underwater vehicle are presented in this study. The hull shape is determined by considering alternative shapes and the dimensions are determined from the internal arrangement of components. Preliminary thermal analyses of the watertight section are performed with a commercial software called FLUENT to check the risk of over-heating due to the heat dissipation of devices. Performance of the proposed hull design is analyze...
Finite element structural model updating by using experimental frequency response functions
Öztürk, Murat; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2009)
Initial forms of analytical models created to simulate real engineering structures may generally yield dynamic response predictions different than those obtained from experimental tests. Since testing a real structure under every possible excitation is not practical, it is essential to transform the initial mathematical model to a model which reflects the characteristics of the actual structure in a better way. By using structural model updating techniques, the initial mathematical model is adjusted so that...
Development of a multigrid accelerated euler solver on adaptively refined two- and three-dimensional cartesian grids
Çakmak, Mehtap; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Cartesian grids offer a valuable option to simulate aerodynamic flows around complex geometries such as multi-element airfoils, aircrafts, and rockets. Therefore, an adaptively-refined Cartesian grid generator and Euler solver are developed. For the mesh generation part of the algorithm, dynamic data structures are used to determine connectivity information between cells and uniform mesh is created in the domain. Marching squares and cubes algorithms are used to form interfaces of cut and split cells. Geome...
Reduced order nonlinear aeroelasticity of swept composite wings using compressible indicial unsteady aerodynamics
Farsadi, Touraj; Rahmanian, Mohammad; Kayran, Altan (Elsevier BV, 2020-01-01)
Nonlinear dynamic aeroelasticity of composite wings in compressible flows is investigated. To provide a reasonable model for the problem, the composite wing is modeled as a thin walled beam (TWB) with circumferentially asymmetric stiffness layup configuration. The structural model considers nonlinear strain displacement relations and a number of non-classical effects, such as transverse shear and warping inhibition. Geometrically nonlinear terms of up to third order are retained in the formulation. Unsteady...
Citation Formats
S. Ontaç, “Finite element analysis of a micro satellite structure under vibration induced loads during launch,” M.S. - Master of Science, Middle East Technical University, 2008.