Hide/Show Apps

Blur estimation and superresolution from multiple registered images

Şenses, Engin Utku
Resolution is the most important criterion for the clarity of details on an image. Therefore, high resolution images are required in numerous areas. However, obtaining high resolution images has an evident technological cost and the value of these costs change with the quality of used optical systems. Image processing methods are used to obtain high resolution images with low costs. This kind of image improvement is named as superresolution image reconstruction. This thesis focuses on two main titles, one of which is the identification methods of blur parameters, one of the degradation operators, and the stochastic SR image reconstruction methods. The performances of different stochastic SR image reconstruction methods and blur identification methods are shown and compared. Then the identified blur parameters are used in superresolution algorithms and the results are shown.