Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
An analysis of peculiarity oriented interestingness measures on medical data
Download
index.pdf
Date
2008
Author
Aldaş, Cem Nuri
Metadata
Show full item record
Item Usage Stats
1
views
1
downloads
Peculiar data are regarded as patterns which are significantly distinguishable from other records, relatively few in number and they are accepted as to be one of the most striking aspects of the interestingness concept. In clinical domain, peculiar records are probably signals for malignancy or disorder to be intervened immediately. The investigation of the rules and mechanisms which lie behind these records will be a meaningful contribution for improved clinical decision support systems. In order to discover the most interesting records and patterns, many peculiarity oriented interestingness measures, each fulfilling a specific requirement, have been developed. In this thesis well-known peculiarity oriented interestingness measures, Local Outlier Factor (LOF), Cluster Based Local Outlier Factor (CBLOF) and Record Peculiar Factor (RPF) are compared. The insights derived from the theoretical infrastructures of the algorithms were evaluated by using experiments on synthetic and real world medical data. The results are discussed based on the interestingness perspective and some departure points for building a more developed methodology for knowledge discovery in databases are proposed.
Subject Keywords
Medical Informatics.
,
Electronic computers.
URI
http://etd.lib.metu.edu.tr/upload/12609856/index.pdf
https://hdl.handle.net/11511/18212
Collections
Graduate School of Informatics, Thesis