Towards silicon based light emitting devices: photoluminescence from terbium doped silicon matrices with or without nanocrystals

Download
2009
Kaleli, Buket
In this study, silicon (Si) rich silicon dioxide (SiO2) films and terbium (Tb) embedded in three different Si containing films has been produced by e-beam evaporation and magnetron sputtering techniques. Post deposition annealing was done for different temperatures and durations to study its effect on both Si nanocrystal formation and Tb luminescence. It was verified by X-ray diffraction technique (XRD) that Si nanocrystals were formed in Si rich matrices. Energy dispersive X-ray (EDS) spectroscopy analysis was carried out to determine the relative concentrations of the atoms inside the produced films. X-ray photoelectron spectroscopy (XPS) gave the evidence of different bonding structures inside the Tb-Si-O containing films. Depth profile measurements were carried out to analyze changes in the relative concentration during sputtering of the layers after annealing of the Tb containing film. Luminescence characteristics of Si nanocrystals and Tb3+ ions were studied by photoluminescence (PL) spectroscopy. It was observed that Tb3+ luminescence enhanced by an energy transfer from Si nanocrystals and trap levels in a matrix. This result supplies valuable information about the excitation paths of Tb3+ ion the way of intense luminescence.

Suggestions

Investigation of electrical and optical properties of ag-in-se based devices
Kaleli, Murat; Parlak, Mehmet; Department of Physics (2010)
Ternary chalcopyrite compound semiconductors have received much attention as the absorbing layers in the polycrystalline thin film solar cell structures. Most widely used one is CuInSe2 and CuInGaSe2 structures, but there are some diffusion problems with copper atoms in the structure. On the other hand, AgInSe2 is promising material with several advantages over the CuInSe2. The aim of this study was to investigate and optimize the production and post-production methods of the Ag-In-Se thin film based hetero...
Density functional theory investigation of TiO2 anatase nanosheets
Sayın, Ceren Sibel; Toffoli, Hande; Department of Physics (2009)
In this thesis, the electronic properties of nanosheets derived from TiO2 anatase structure which acts as a photocatalyst, are investigated using the density functional theory. We examine bulk constrained properties of the nanosheets derived from the (001) surface and obtain their optimized geometries. We investigate properties of lepidocrocite-type TiO2 nanosheets and nanotubes of different sizes formed by rolling the lepidocrocite nanosheets. We show that the stability and the band gaps of the considered ...
Adsorption of gold atoms on anatase TiO2 (100)-1x1 surface
Vural, Kıvılcım Başak; Ellialtıoğlu, Süleyman Şinasi; Department of Physics (2009)
In this work the electronic and structural properties of anatase TiO2 (100) surface and gold adsorption have been investigated by using the first-principles calculations based on density functional theory (DFT). TiO2 is a wide band-gap material and to this effects it finds numerous applications in technology such as, cleaning of water, self-cleaning, coating, solar cells and so on. Primarily, the relation between the surface energy of the anatase (100)-1x1 phase and the TiO2-layers is examined. After an app...
Silicon nanocrystals embedded in sio2 for light emitting diode (led) applications
Kulakçı, Mustafa; Turan, Raşit; Department of Physics (2005)
In this study, silicon nanocrystals (NC) were synthesized in silicon dioxide matrix by ion implantation followed by high temperature annealing. Annealing temperature and duration were varied to study their effect on the nanocrystal formation and optical properties. Implantation of silicon ions was performed with different energy and dose depending on the oxide thickness on the silicon substrate. Before device fabrication, photoluminescence (PL) measurement was performed for each sample. From PL measurement ...
Energy bands of tise and tlınse2 in tight binding model
Yıldırım, Özlem; Ellialtıoğlu, Süleyman Şinasi; Department of Physics (2005)
The electronical and structural properties of TlSe-type chain-like crystals are the main topic of this study. A computational method which is Tight Binding method is introduced and used to obtain the electronic band structure of TlSe and TlInSe2 . For both materials the partial and total density of states are calculated. The results are compared with the other theoretical results.
Citation Formats
B. Kaleli, “Towards silicon based light emitting devices: photoluminescence from terbium doped silicon matrices with or without nanocrystals,” M.S. - Master of Science, Middle East Technical University, 2009.