Hide/Show Apps

Towards silicon based light emitting devices: photoluminescence from terbium doped silicon matrices with or without nanocrystals

Kaleli, Buket
In this study, silicon (Si) rich silicon dioxide (SiO2) films and terbium (Tb) embedded in three different Si containing films has been produced by e-beam evaporation and magnetron sputtering techniques. Post deposition annealing was done for different temperatures and durations to study its effect on both Si nanocrystal formation and Tb luminescence. It was verified by X-ray diffraction technique (XRD) that Si nanocrystals were formed in Si rich matrices. Energy dispersive X-ray (EDS) spectroscopy analysis was carried out to determine the relative concentrations of the atoms inside the produced films. X-ray photoelectron spectroscopy (XPS) gave the evidence of different bonding structures inside the Tb-Si-O containing films. Depth profile measurements were carried out to analyze changes in the relative concentration during sputtering of the layers after annealing of the Tb containing film. Luminescence characteristics of Si nanocrystals and Tb3+ ions were studied by photoluminescence (PL) spectroscopy. It was observed that Tb3+ luminescence enhanced by an energy transfer from Si nanocrystals and trap levels in a matrix. This result supplies valuable information about the excitation paths of Tb3+ ion the way of intense luminescence.