Rrt based kinodynamic motion planning for multiple camera industrial inspection

Download
2009
Bilge, Burak
Kinodynamic motion planning is an important problem in robotics. It consists of planning the dynamic motion of a robotic system taking into account its kinematic and dynamic constraints. For this class of problems, high dimensionality is a major difficulty and finding an exact time optimal robot motion trajectory is proven to be NP-hard. Probabilistic approximate techniques have therefore been proposed in the literature to solve particular problem instances. These methods include Randomized Potential Field Planners (RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring Random Trees (RRT). When physical obstacles and differential constraints are added to the problem, applying RPPs or PRMs encounter difficulties. In order to handle these difficulties, RRTs have been proposed. In this study, we consider a multiple camera industrial inspection problem where the concurrent motion of these cameras needs to be planned. The cameras are required to capture maximum number of defect locations while globally avoiding collisions with each other and with obstacles. Our approach is to consider a solution to the kinodynamic planning problem of multiple camera inspection by making use of the RRT algorithm. We explore and resolve issues arising when RRTs are applied to this specific problem class. Along these lines, we consider the cases of a single camera without obstacles and then with obstacles. Then, we attempt to extend the study to the case of multiple camera where we also need to avoid collisions between cameras. We present simulation results to show the performance of our RRT based approach to different instrument configurations and compare with existing deterministic approaches.

Suggestions

Cascade modeling of nonlinear systems
Şenalp, Erdem Türker; Tulunay, Ersin; Department of Electrical and Electronics Engineering (2007)
Modeling of nonlinear systems based on special Hammerstein forms has been considered. In Hammerstein system modeling a static nonlinearity is connected to a dynamic linearity in cascade form. Fundamental contributions of this work are: 1) Introduction of Bezier curve nonlinearity representations; 2) Introduction of B-Spline curve nonlinearity representations instead of polynomials in cascade modeling. As a result, local control in nonlinear system modeling is achieved. Thus, unexpected variations of the out...
Optimum current injection strategy for magnetic resonance electrical impedance tomography
Altunel, Haluk; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2008)
In this thesis, optimum current injection strategy for Magnetic Resonance Electrical Impedance Tomography (MREIT) is studied. Distinguishability measure based on magnetic flux density is defined for MREIT. Limit of distinguishability is analytically derived for an infinitely long cylinder with concentric and eccentric inhomogeneities. When distinguishability limits of MREIT and Electrical Impedance Tomography (EIT) are compared, it is found that MREIT is capable of detecting smaller perturbations than EIT. ...
Tracker-aware detection : a theoretical and an experimental study
Aslan, Murat Şamil; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2009)
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance pred...
Performance of bilinear time-frequency transforms in isar
Loğoğlu, Berker; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2007)
In this thesis a stepped-frequency Inverse Synthetic Aperture Radar (ISAR) is employed to develop two-dimensional range-Doppler images of a small ghter aircraft which exhibits three dimensional rotational rotation. The simulation is designed such that the target can exhibit yaw, pitch and roll motions at the same time. First, radar returns from prominent scatterers of various parts of the target are processed and displayed using conventional Fourier transform. The e ects of di erent complex motion types an...
Time domain scattering from single and multiple objects
Azizoğlu, Süha Alp; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2008)
The importance of the T-matrix method is well-known when frequency domain scattering problems are of interest. With the relatively recent and wide-spread interest in time domain scattering problems, similar applications of the T-matrix method are expected to be useful in the time domain. In this thesis, the time domain spherical scalar wave functions are introduced, translational addition theorems for the time domain spherical scalar wave functions necessary for the solution of multiple scattering problems ...
Citation Formats
B. Bilge, “Rrt based kinodynamic motion planning for multiple camera industrial inspection,” M.S. - Master of Science, Middle East Technical University, 2009.