Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Density functional theory for trapped ultracold fermions
Download
index.pdf
Date
2009
Author
Akyar, Özge
Metadata
Show full item record
Item Usage Stats
72
views
42
downloads
Cite This
Recently a new outlook on dealing with dipolar ultracold fermions based on density functional methods has received attention. A Thomas-Fermi treatment coupled with a variational approach has been developed for a collection of fermions trapped in a harmonic potential interacting via dipole-dipole forces. In this thesis, firstly our alternative formalism for Thomas-Fermi method by performing some calculations based on the Kohn-Sham formalism which is one of the main idea of density functional theory is investigated. Furthermore, density distributions are obtained dependent to the parameters; rescaled interaction strength, dipole-dipole energy and the trap parameter which determine the trap geometry based on this theory. The thesis starts with a brief outline of the density functional theory and theory of our system, continues with calculations based on this theory, which are free of any variational assumptions for the density profile. Moreover, results of density graphics for harmonic trap will be followed by discussion of comparison and contrast with Thomas-Fermi method based on the paper of Goral et al.. These discussions are mainly about the shape of the density distribution, variation of the cloud parameters and energy behaviours according to the rescaled interaction strength. The thesis concludes with an analysis of contribution of density functional theory to this fermionic system.
Subject Keywords
Physics.
,
Optics.
URI
http://etd.lib.metu.edu.tr/upload/12610948/index.pdf
https://hdl.handle.net/11511/19050
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Density functional theory investigation of two-dimensional dipolar fermions in a harmonic trap
Toffoli, Hande; TANATAR, BİLAL (2014-08-13)
We investigate the behavior of polarized dipolar fermions in a two-dimensional harmonic trap in the framework of the density functional theory (DFT) formalism using the local density approximation. We treat only a few particles interacting moderately. Important results were deduced concerning key characteristics of the system such as total energy and particle density. Our results indicate that, at variance with Coulombic systems, the exchangecorrelation component was found to provide a large contribution to...
Equipotential shells for efficient inductance extraction
Beattie, M; Krauter, B; Alatan, Lale; Pileggi, L (2001-01-01)
To make three-dimensional (3-D) on-chip interconnect inductance extraction tractable, it is necessary to ignore parasitic couplings without compromising critical properties of the interconnect system. It is demonstrated that simply discarding faraway mutual inductance couplings can lead to an unstable approximate inductance matrix. In this paper, we describe an equipotential shell methodology, which generates a partial inductance matrix that is sparse yet stable and symmetric. We prove the positive definite...
Density functional theory (DFT) study of BaScO3H0.5 compound and its hydrogen storage properties
Gencer, Ayşenur; Surucu, Gokhan (Canadian Science Publishing, 2019-11-01)
BaScO3 and its hydride BaScO3H0.5 have been investigated using density functional theory (DFT) with the generalized gradient approximation (GGA). BaScO3 perovskite can crystallize in five possible crystal structures: orthorhombic (Pnma), tetragonal (P4mm), rhombohedral (R-3c), hexagonal (P63/mmc), and cubic (Pm-3m). These five possible phases have been optimized to obtain the most stable phase of BaScO3. The orthorhombic phase, being the most stable and having the lowest volume among the studied phases, has...
Multinucleon transfer in Ni-58+Ni-60 and Ni-60+Ni-60 in a stochastic mean-field approach
Yilmaz, B.; Ayik, S.; Yılmaz, Osman; Umar, A. S. (2018-09-07)
The multinucleon exchange mechanism in Ni-58 + Ni-60 and Ni-60 + Ni-60 collisions is analyzed in the framework of the stochastic mean-field approach. The results of calculations are compared with the time-dependent random-phase approximation (TDRPA) calculations and the recent data of Ni-58 + Ni-60. A good description of the data and a relatively good agreement with the TDRPA calculations are found.
Density Functional Theory Calculations on Polyacene Molecules
Pekoz, Rengin; Erkoç, Şakir (2010-03-01)
The structural and electronic properties of isolated linear and zigzag type polyacene molecules have been investigated by density functional theory calculations using B3LYP exchange-correlation functional with 6-31G(d) basis set. The zigzag polyacene molecules found to be energetically more stable than the linear structures and the optimized molecules of both types have planar geometries. In the present study, more attention has been given to the picene molecule which is a rival to pentacene molecule and ha...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Akyar, “Density functional theory for trapped ultracold fermions,” M.S. - Master of Science, Middle East Technical University, 2009.