Discrete time/cost trade-off project scheduling with a nonrenewable resource

Download
2009
Kırbıyık, Selin
In this thesis, we consider a discrete time/cost trade-off problem with a single nonrenewable resource. We assume the resource is released at some prespecified time points and at some prespecified quantities. We also assume that the costs due to the activities are incurred at their completions. Our aim is to minimize total project completion time. We formulate the problem as a pure integer programming model. We show that the problem is strongly NP-hard. We find lower bounds by pure linear programming and mixed integer linear programming relaxations of the model. We develop three heuristic procedures using the optimal solutions of mixed integer linear program and pure linear program. The results of our computational study reveal the satisfactory performance of our heuristic procedures.

Suggestions

Cross reference models for estimating unknown principal force components in end-milling process
Dölen, Melik; Lorenz, RD (Elsevier BV, 2003-01-01)
This paper focuses on the problem of estimating the unknown principal cutting force component with the available knowledge on the other component. The paper presents two compact (end-milling) process models. Using these models, two cross-reference models, which explore the functional relationships among the free parameters of these models, are developed. Within the framework of constructing an unknown force component, the estimation performance of the proposed models along with their inherent limitations ar...
Optimal pricing and production decisions in reusable container systems
Atamer, Büşra; Bakal, İsmail Serdar; Department of Industrial Engineering (2010)
In this study, we focus on pricing and production decisions in reusable container systems with stochastic demand. We consider a producer that sells a single product to the customers in reusable containers with two supply options: (i) brand-new containers, (ii) returned containers from customers. Customers purchasing the products may return the containers to the producer to receive a deposit price. The return quantity depends on both customer demand and the deposit price determined by the producer. Hence, th...
Multi resource agent bottleneck generalized assignment problem
Karabulut, Özlem; Azizoğlu, Meral; Department of Industrial Engineering (2010)
In this thesis, we consider the Multi Resource Agent Bottleneck Generalized Assignment Problem. We aim to minimize the maximum load over all agents. We study the Linear Programming (LP) relaxation of the problem. We use the optimal LP relaxation solutions in our Branch and Bound algorithm while defining lower and upper bounds and branching schemes. We find that our Branch and Bound algorithm returns optimal solutions to the problems with up to 60 jobs when the number of agents is 5, and up to 30 jobs when t...
Disassembly line balancing problem with fixed number of workstations and finite supply
Göksoy, Eda; Azizoğlu, Meral; Department of Industrial Engineering (2010)
In this thesis, we consider a Disassembly Line Balancing Problem (DLBP) with fixed number of workstations. We aim to maximize the total value of the recovered parts. We assume that there is a limited supply for the products to be disassembled. Different components can be obtained by disassembling different units of the product. Our aim is to assign the tasks to the workstations of the disassembly line so as to maximize the total value of the recovered parts. We present several upper and one lower bounding p...
Assembly line balancing with multi-manned tasks
Esin, Ceyhan Erdem; Kırca, Ömer; Department of Industrial Engineering (2007)
In this thesis, we define a new problem area for assembly lines. In the literature, there are various studies on assembly line balancing, but none of them consider multi-manned tasks, task to which at least two operators have to be assigned. Two mathematical models and one constraint programming model are developed for both Type-I and Type-II ALB problems. The objective of Type-I problem is to minimize the number of stations whereas the objective of Type-II problem is to minimize the cycle time. In addition...
Citation Formats
S. Kırbıyık, “Discrete time/cost trade-off project scheduling with a nonrenewable resource,” M.S. - Master of Science, Middle East Technical University, 2009.