Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Inhomogeneous symplectic transformations of coherent and squeezed states
Download
076020.pdf
Date
1998
Author
Faridfathi, Gholamreza
Metadata
Show full item record
Item Usage Stats
108
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/1930
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Inviscid burgers equations and its numerical solutions
Oyar, Nazmi; Okutmuştur, Baver; Department of Mathematics (2017)
In this work, we consider the Burgers equation with zero viscosity term which is called the inviscid Burgers equation. We analyzed this equation both theoretically and numerically through this study. Firstly, we solve this equation analytically by means of characteristic method since it is in the class of quasilinear partial differential equation. Then, initial value problems for this equation subject to continuous and discontinuous initial conditions are studied. We used three different numerical schemes n...
Equivariant reduction of Yang-Mills theory over the fuzzy sphere and the emergent vortices
Harland, Derek; Kürkcüoğlu, Seçkin (Elsevier BV, 2009-11-01)
We consider a U(2) Yang-Mills theory on M x S(F)(2) where M is a Riemannian manifold and S(F)(2) is the fuzzy sphere. Using essentially the representation theory of SU(2) we determine the most general SU(2)equivariant gauge field on M x S(F)(2). This allows us to reduce the Yang-Mills theory on M x S(F)(2) down to an Abelian Higgs-type model over M. Depending on the enforcement (or non-enforcement) of a "constraint" term, the latter may (or may not) lead to the standard critically-coupled Abelian Higgs mode...
Involutions in locally finite groups
Kuzucuoğlu, Mahmut (Wiley, 2004-04-01)
The paper deals with locally finite groups G having an involution phi such that C-G(phi) is of finite rank. The following theorem gives a very detailed description of such groups.
Equivariant Reduction of Gauge Theories over Fuzzy Extra Dimensions
Kürkcüoğlu, Seçkin (IOP Publishing, 2012-2-8)
In SU(N) Yang-Mills theories on a manifold M, which are suitably coupled to a set of scalars, fuzzy spheres may be generated as extra dimensions by spontaneous symmetry breaking. This process results in gauge theories over the product space of the manifold M and the fuzzy spheres with smaller gauge groups. Here we present the SU(2)- and SU(2) x SU(2)-equivariant parametrization of U(2) and U(4) gauge fields on S-F(2), and S-F(2), x S-F(2), respectively and outline the dimensional reduction of these theories...
Equivariant vector fields on three dimensional representation spheres
Gürağaç, Hami Sercan; Önder, Mustafa Turgut; Department of Mathematics (2011)
Let G be a finite group and V be an orthogonal four-dimensional real representation space of G where the action of G is non-free. We give necessary and sufficient conditions for the existence of a G-equivariant vector field on the representation sphere of V in the cases G is the dihedral group, the generalized quaternion group and the semidihedral group in terms of decomposition of V into irreducible representations. In the case G is abelian, where the solution is already known, we give a more elementary so...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Faridfathi, “Inhomogeneous symplectic transformations of coherent and squeezed states,” Middle East Technical University, 1998.