Production of scalars at electron colliders in the context of littlest higgs model

Download
2009
Çağıl, Ayşe
The littlest Higgs model is one of the most economical solution to the hierarchy problem of the standard model. It predicts existence of new gauge vectors and also new scalars, neutral and charged. The littlest Higgs model predicts the existence of new scalars beside a scalar that can be assigned as Higgs scalar of the standard model. In this thesis, the production of scalars in $e^+e^-$ colliders is studied. The scalar productions associated with standard model Higgs boson are also analyzed. The effects of the parameters of the littlest Higgs model to these processes are examined in detail. The collider phenomenology of the littlest Higgs model is strongly dependant on the free parameters of the model, which are the mixing angles $s,s'$ and the symmetry breaking scale $f$. The parameters of the model are strongly restricted when the fermions are charged under only one $U(1)$ subgroup. In this thesis, by charging fermions under two $U(1)$ subgroups, the constraints on the symmetry braking scale and the mixing angles are relaxed. In the littlest Higgs model, the existence of charged heavy scalars also displays an interesting feature. By writing a Majorano like term in the Yukawa Lagrangian, these heavy charged scalars are allowed to decay in to lepton pairs, violating lepton number and flavor. In this thesis, the leptonic final states and also the lepton flavor and number violating final signals are also analyzed. As a result of these thesis, it is predicted that the scalar production will be in the reach for a $\sqrt{S}=2TeV$ $e^+ e^-$ collider, giving significant number of lepton flavor violating signals depending on the Yukawa couplings of the flavor violating term.

Suggestions

Computing Answer Sets Using Model Generation Theorem Provers
Sabuncu, Orkunt; Alpaslan, Ferda Nur (null; 2007-09-13)
Model generation theorem provers have the capability of producing a model when the first-order input theory is satisfiable. Because grounding step may generate huge propositional instances of the program it hardens the search process of answer set solvers. We propose the use of model generation theorem provers as computational engines for Answer Set Programming (ASP). It can be seen as lifting of SAT-based ASP to the first-order level for tight programs to eliminate the grounding step of ASP or do it more i...
Non-Einsteinian black holes in generic 3D gravity theories
Gürses, Metin; Şisman, Tahsin Çağrı; Tekin, Bayram (AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA, 2019-09-21)
The Banados-Teitelboim-Zanelli (BTZ) black hole metric solves the three-dimensional Einstein's theory with a negative cosmological constant as well as all the generic higher derivative gravity theories based on the metric; as such it is a universal solution. Here, we find, in all generic higher derivative gravity theories, new universal non-Einsteinian solutions obtained as Kerr-Schild type deformations of the BTZ black hole. Among these, the deformed nonextremal BTZ black hole loses its event horizon while...
Magnetic Moments of 70-Plet Baryons in Quark Model and QCD Sum Rules
Alıyev, Tahmasıb (2015-01-01)
Magnetic moments of the positive parity 70-plet baryons are estimated in the framework of the nonrelativistic quark model and QCD sum rules method. It is found that the magnetic moments of the 70-plet baryons can be expressed in terms of the F and D couplings and exhibit unitary symmetry. The QCD sum rules for the magnetic moments of the 70-plet octet baryons are formulated. A comparison of our results on magnetic moments of 56-plet and 70-plet baryons predicted from QCD sum rules is presented.
Dynamics of extended objects in general relativity
İlhan, İbrahim Burak; Tekin, Bayram; Department of Physics (2009)
In this thesis, multipole expansions of mass, momentum and stress density will be made for a body in Newtonian mechanics. Using these definitions; momentum, angular momentum, center of mass, force and torque are defined for N gravitationally interacting isolated bodies. Equations of motions of such a system are derived. Definitions of momentum, angular momentum, center of mass, force and torque are made in a relativistic theory. Dynamical (gravitational) skeleton is defined and the multipole moments of the ...
Exact solutions of the modified Kratzer potential plus ring-shaped potential in the d-dimensional Schrodinger equation by the Nikiforov-Uvarov method
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-02-01)
We present analytically the exact energy bound-states solutions of the Schrodinger equation in D dimensions for a recently proposed modified Kratzer plus ring-shaped potential by means of the Nikiforov-Uvarov method. We obtain an explicit solution of the wave functions in terms of hyper-geometric functions (Laguerre polynomials). The results obtained in this work are more general and true for any dimension which can be reduced to the well-known three-dimensional forms given by other works.
Citation Formats
A. Çağıl, “Production of scalars at electron colliders in the context of littlest higgs model,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.