Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
2-d modeling of aproton exchange membrane fuel cell
Download
index.pdf
Date
2010
Author
Ağar, Ertan
Metadata
Show full item record
Item Usage Stats
150
views
80
downloads
Cite This
In this thesis, a Proton Exchange Membrane Fuel Cell is modeled with COMSOL Multiphysics software. A cross-section that is perpendicular to the flow direction is modeled in a 2-D, steady-state, one-phase and isothermal configuration. Anode, cathode and membrane are used as subdomains and serpentine flow channels define the flow field . The flow velocity is defined at the catalyst layers as boundary conditions with respect to the current density that is obtained by using an agglomerate approach at the catalyst layer with the help of fundamental electrochemical equations. Darcy’s Law is used for modeling the porous media flow. To investigate the effects of species depletion along the flow channels, a different type of cross-section that is parallel to the flow direction is modeled by adding flow channels as a subdomain to the anode and cathode. Differently, Brinkman Equations are used to define flow in the porous electrodes and the free flow in the channels is modeled with Navier-Stokes equations. By running parallel-to-flow model, mass fractions of species at three different locations (the inlet, the center and the exit of the channel) are predicted for different cell po- tentials. These mass fractions are used as inputs to the perpendicular-to-flow model to obtain performance curves. Finally, by maintaining restricted amount of species by having a very low pressure difference along the channel to represent a single mid-cell of a fuel cell stack, a species depletion problem is detected. If the cell potential is decreased beyond a critical value, this phenomenon causes dead places at which the reaction does not take place. Therefore, at these dead places the current density goes to zero unexpectedly.
Subject Keywords
Mechanical engineering.
,
TJ Energy Conservation 163.26-163.5
URI
http://etd.lib.metu.edu.tr/upload/12611587/index.pdf
https://hdl.handle.net/11511/19408
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Multi-Band Metamaterial Absorber: Design, Experiment and Physical Interpretation
Dincer, F.; KARAASLAN, MUHARREM; ÜNAL, EKİN ANIL; Akgol, O.; Sabah, C. (2014-03-01)
This paper presents the design, fabrication, characterization and experimental verification of a perfect Multi-Band Metamaterial (MTM) absorber (MA) based on a simple configuration of a rectangular resonator and strips operating in microwave frequency regime. The proposed multi-band MA provides perfect absorption with TE-incident angle independency. Maximum absorption rate is achieved as 99.43% at 5.19 GHz for simulation and 98.67% at 5.19 GHz for experiment, respectively. The measurement results of the fab...
Experimental investigation of CO tolerance in high temperature PEM fuel cells
DEVRİM, YILSER; Albostan, Ayhan; Devrim, Huseyin (Elsevier BV, 2018-10-04)
In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to th...
Experimental investigation of R134a flow in a 1.65 mm copper minitube
Tekin, Bilgehan; Güvenç Yazıcıoğlu, Almıla; Kakaç, S.; Department of Mechanical Engineering (2011)
This thesis investigates the refrigerant (R-134a) flow in a minitube experimentally. The small scale heat transfer is a relatively new research area and has been in favor since the end of 1970’s. Refrigerant flow in mini- and microscale media is a potential enhancement factor for refrigeration technology in the future. For the forthcoming developments and progresses, experimental studies are invaluable in terms of having an insight and contributing to the establishment of infrastructure in the field in addi...
Photovoltaic and photophysical properties of a novel bis-3-hexylthiophelle substituted quinoxaline derivative
GÜNEŞ, Serap; Baran, Derya; Günbaş, Emrullah Görkem; Oezyurt, Funda; Fuchsbauer, Anita; Sariciftci, Niyazi Serdar; Toppare, Levent Kamil (Elsevier BV, 2008-09-01)
We report on the photophysical properties and photovoltaic performance of a polythiophene derivative, poly-2,3-bis(4-tert-butylphenyl)-5,8-bis(4-hexylthiophen-2-yl)quinoxaline(PHTQ) as an electron donor in bulk heterojunction Solar Cells blended with the acceptor 1-(3-met hoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerence (PCBM). Devices were composed of PHTQ and varying amounts of PCBM (1:1, 1:2, 1:3, 1:4 w-w ratio). The components were spin cast from ortho-dichlorobenzene (ODCB) and characterized by mea...
Genetic algorithms applied to Li+ ions contained in carbon nanotubes: An investigation using particle swarm optimization and differential evolution along with molecular dynamics
Chakraborti, N.; Das, S.; Jayakanth, R.; Pekoz, R.; Erkoç, Şakir (Informa UK Limited, 2007-01-01)
Empirical potentials based upon two and three body interactions were applied to the Li+ -C system, assuming the Li+ ions to be distributed inside high-symmetry, single walled carbon nanotubes of different chirality. Structural optimizations for various assemblages were conducted using evolutionary and genetic algorithms, where differential evolution and particle swarm optimization techniques worked satisfactorily. The results were compared with the outcome of some rigorous molecular dynamics simulations. Th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ağar, “2-d modeling of aproton exchange membrane fuel cell,” M.S. - Master of Science, Middle East Technical University, 2010.