Si and si(1-x)ge(x) nanocrystals: synthesis, structural characterization, and simultaneous observation of quantum confined and interface related photoluminescence

Asghar Pour Moghaddam, Nader
In this work we have prepared Si and SI(1-X)GE(X) nanocrystals by rf magnetron cosputtering method. The e ect of annealing parameters and Ge content of x on the structural and optical properties sandwiched SiO2/SiO2: Si: Ge/SiO2 nanostructures have been investigated. For characterization we have used cross-sectional high resolution electron microscope (HREM), X-ray di raction (XRD), Raman spectroscopy (RS), Fourier transform infrared (FTIR), photoluminescence (PL), and temperature dependent PL (TDPL) techniques. It was shown that Ge content of x, annealing temperature, and annealing time are important parameters a ecting the structural and optical properties of the nanocrystals. We have observed a uniform SI(1-X)GE(X) nanocrystal formation upon annealing at relatively low temperatures and short annealing time. However, Ge-rich SI(1-X)GE(X) nanocrystals do not hold their compositional uniformity when annealed at high temperatures for enough long time. A segregation process leads to the separation of Ge and Si atoms from each other and formation of Si-rich core covered by a Ge-rich shell. Related to the optical properties of Si and SI(1-X)GE(X) nanocrystals, influence of annealing treatments and Ge content of x on the simultaneous observation and relative contribution of quantum confined and interface related radiative emission to PL spectra are investigated. On the other hand, temperature dependent photoluminescence (TDPL) measurements have been applied to investigate in detail the involving PL mechanisms and the competing thermally activated emission process and the thermally activated escape process of carriers into nonradiative recombination centers and/or tunneling of the excitons into the interface or to larger nanocrystals.


Mems gyroscopes for tactical-grade inertial measurement applications
Alper, Said Emre; Akın, Tayfun; Department of Electrical and Electronics Engineering (2005)
This thesis reports the development of high-performance symmetric and decoupled micromachined gyroscopes for tactical-grade inertial measurement applications. The symmetric structure allows easy matching of the resonance frequencies of the drive and sense modes of the gyroscopes for achieving high angular rate sensitivity; while the decoupled drive and sense modes minimizes mechanical cross-coupling for low-noise and stable operation. Three different and new symmetric and decoupled gyroscope structures with...
Deep-trench RIE optimization for high performance MEMS microsensors
Aydemir, Akın; Turan, Raşit; Department of Physics (2007)
This thesis presents the optimization of deep reactive ion etching process (DRIE) to achieve high precision 3-dimensional integrated micro electro mechanical systems (MEMS) sensors with high aspect ratio structures. Two optimization processes have been performed to achieve 20 μm depth for 1 μm opening for a dissolved wafer process (DWP) and to achieve 100 μm depth for 1 μm opening for silicon-on-glass (SOG) process. A number of parameters affecting the etch rate and profile angle are investigated, including...
Development of atomic force microscopy system and kelvin probe microscopy system for use in semiconductor nanocrystal characterization
Bostancı, Umut; Turan, Raşit; Department of Physics (2007)
Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM) are two surface characterization methods suitable for semiconductor nanocrystal applications. In this thesis work, an AFM system with KPM capability was developed and implemented. It was observed that, the effect of electrostatic interaction of the probe cantilever with the sample can be significantly reduced by using higher order resonant modes for Kelvin force detection. Germanium nanocrystals were grown on silicon substrate using different g...
Numerical studies of the electronic properties of low dimensional semiconductor heterostructures
Dikmen, Bora; Tomak, Mehmet; Department of Physics (2004)
An efficient numerical method for solving Schrödinger's and Poisson's equations using a basis set of cubic B-splines is investigated. The method is applied to find both the wave functions and the corresponding eigenenergies of low-dimensional semiconductor structures. The computational efficiency of the method is explicitly shown by the multiresolution analysis, non-uniform grid construction and imposed boundary conditions by applying it to well-known single electron potentials. The method compares well wit...
Quantum mechanics on curved hypersurfaces
Olpak, Mehmet Ali; Tekin, Bayram; Department of Physics (2010)
In this work, Schrödinger and Dirac equations will be examined in geometries that confine the particles to hypersurfaces. For this purpose, two methods will be considered. The first method is the thin layer method which relies on explicit use of geometrical relations and the squeezing of a certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving the modification of canonical quantization making use of the geometrical constraints. For the Dirac equation, only the fir...
Citation Formats
N. Asghar Pour Moghaddam, “Si and si(1-x)ge(x) nanocrystals: synthesis, structural characterization, and simultaneous observation of quantum confined and interface related photoluminescence,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.