Application, comparison, and improvement of known received signal strength indication (RSSI) based indoor localization and tracking methods using active RFID devices

Download
2011
Özkaya, Bora
Localization and tracking objects or people in real time in indoor environments have gained great importance. In the literature and market, many different location estimation and tracking solutions using received signal strength indication (RSSI) are proposed. But there is a lack of information on the comparison of these techniques revealing their weak and strong behaviors over each other. There is a need for the answer to the question; “which localization/tracking method is more suitable to my system needs?”. So, one purpose of this thesis is to seek the answer to this question. Hence, we investigated the behaviors of commonly proposed localization methods, mainly nearest neighbors based methods, grid based Bayesian filtering and particle filtering methods by both simulation and experimental work on the same test bed. The other purpose of this thesis is to propose an improved method that is simple to install, cost effective and moderately accurate to use for real life applications. Our proposed method uses an improved type of sampling importance resampling (SIR) filter incorporating automatic calibration of propagation model parameters of logv distance path loss model and RSSI measurement noise by using reference tags. The proposed method also uses an RSSI smoothing algorithm exploiting the RSSI readings from the reference tags. We used an active RFID system composed of 3 readers, 1 target tag and 4 reference tags in a home environment of two rooms with a total area of 36 m². The proposed method yielded 1.25 m estimation RMS error for tracking a mobile target.

Suggestions

Energy-efficient packet size optimization for cognitive radio sensor networks
Oto, Mert Can; Candan, Çağatay; Akan, Özgür Barış; Department of Electrical and Electronics Engineering (2011)
Localization and tracking objects or people in real time in indoor environments have gained great importance. In the literature and market, many different location estimation and tracking solutions using received signal strength indication (RSSI) are proposed. But there is a lack of information on the comparison of these techniques revealing their weak and strong behaviors over each other. There is a need for the answer to the question; “which localization/tracking method is more suitable to my system needs...
Global urban localization of an outdoor mobile robot using satellite images
Doğruer, Can Ulaş; Koku, Ahmet Buğra; Department of Mechanical Engineering (2009)
In this dissertation, the mapping of outdoor environments and localization of a mobile robot in that setting is considered. It is well known that in the absence of a map or precise pose estimates, localization and mapping is a coupled problem. However, in this dissertation this problem is decoupled in to two disjoint steps; mapping and localization on the acquired map. First the images of the outdoor environment is downloaded from a website such as Google Earth and then these images are processed by utilizi...
Optimizing core signal processing functions on a superscalar SIMD architecture
Uslu, Çağrı; Bazlamaçcı, Cüneyt Fehmi; Department of Electrical and Electronics Engineering (2019)
Digital Signal Processing (DSP) is the basis of many technologies, such as Image Processing, Speech Recognition, Radars, etc. Use of electronic devices such as smart- phones, smartwatches, self-driving cars and autonomous robots that take advantage of these technologies becomes widespread and hence it is more critical than ever for these technologies to be realized with high efficiency on cheaper and less power- hungry devices. Cortex-A15 processor architecture is one of the solutions from ARM to this requi...
Application and Modeling of a Magnetic WSN for Target Localization
Baghaee, Sajjad; GÜRBÜZ, SEVGİ ZÜBEYDE; Uysal, Elif (2013-04-12)
The aim of this study is modeling ferromagnetic targets for localization and identification of such objects by a wireless sensor network (WSN). MICAz motes were used for setting up a wireless sensor network utilizing a centralized tree-based system. The detection and tracking of ferromagnetic objects is an important application of WSNs. This research focuses on analyzing the sensing limitations of magnetic sensors via tests conducted on small-scale targets which are moving within a 30 cm radius around the s...
Implementation of an Enhanced Target Localization and Identification Algorithm on a Magnetic WSN
Baghaee, Sajjad; GÜRBÜZ, SEVGİ ZÜBEYDE; Uysal, Elif (2015-10-01)
Wireless sensor networks (WSNs) are ubiquitous in a wide range of applications requiring the monitoring of physical and environmental variables, such as target localization and identification. One of these applications is the sensing of ferromagnetic objects. In typical applications, the area to be monitored is typically large compared to the sensing radius of each magnetic sensor. On the other hand, the RF communication radii of WSN nodes are invariably larger than the sensing radii. This makes it economic...
Citation Formats
B. Özkaya, “Application, comparison, and improvement of known received signal strength indication (RSSI) based indoor localization and tracking methods using active RFID devices,” M.S. - Master of Science, Middle East Technical University, 2011.