Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy-efficient packet size optimization for cognitive radio sensor networks
Download
index.pdf
Date
2011
Author
Oto, Mert Can
Metadata
Show full item record
Item Usage Stats
109
views
198
downloads
Cite This
Localization and tracking objects or people in real time in indoor environments have gained great importance. In the literature and market, many different location estimation and tracking solutions using received signal strength indication (RSSI) are proposed. But there is a lack of information on the comparison of these techniques revealing their weak and strong behaviors over each other. There is a need for the answer to the question; “which localization/tracking method is more suitable to my system needs?”. So, one purpose of this thesis is to seek the answer to this question. Hence, we investigated the behaviors of commonly proposed localization methods, mainly nearest neighbors based methods, grid based Bayesian filtering and particle filtering methods by both simulation and experimental work on the same test bed. The other purpose of this thesis is to propose an improved method that is simple to install, cost effective and moderately accurate to use for real life applications. Our proposed method uses an improved type of sampling importance resampling (SIR) filter incorporating automatic calibration of propagation model parameters of logv distance path loss model and RSSI measurement noise by using reference tags. The proposed method also uses an RSSI smoothing algorithm exploiting the RSSI readings from the reference tags. We used an active RFID system composed of 3 readers, 1 target tag and 4 reference tags in a home environment of two rooms with a total area of 36 m². The proposed method yielded 1.25 m estimation RMS error for tracking a mobile target.
Subject Keywords
Cognitive radio networks.
,
Electrical and Electronics Engineering.
URI
http://etd.lib.metu.edu.tr/upload/12613040/index.pdf
https://hdl.handle.net/11511/20390
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Application, comparison, and improvement of known received signal strength indication (RSSI) based indoor localization and tracking methods using active RFID devices
Özkaya, Bora; Koç, Arzu; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2011)
Localization and tracking objects or people in real time in indoor environments have gained great importance. In the literature and market, many different location estimation and tracking solutions using received signal strength indication (RSSI) are proposed. But there is a lack of information on the comparison of these techniques revealing their weak and strong behaviors over each other. There is a need for the answer to the question; “which localization/tracking method is more suitable to my system needs...
A comparative performance evaluation of scale invariant interest point detectors for infrared and visual images
Emir, Erdem; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2008)
In this thesis, the performance of four state-of-the-art feature detectors along with SIFT and SURF descriptors in matching object features of mid-wave infrared, long-wave infrared and visual-band images is evaluated across viewpoints and changing distance conditions. The utilized feature detectors are Scale Invariant Feature Transform (SIFT), multiscale Harris-Laplace, multiscale Hessian-Laplace and Speeded Up Robust Features (SURF) detectors, all of which are invariant to image scale and rotation. Feature...
Visual detection and tracking of moving objects
Ergezer, Hamza; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2007)
In this study, primary steps of a visual surveillance system are presented: moving object detection and tracking of these moving objects. Background subtraction has been performed to detect the moving objects in the video, which has been taken from a static camera. Four methods, frame differencing, running (moving) average, eigenbackground subtraction and mixture of Gaussians, have been used in the background subtraction process. After background subtraction, using some additional operations, such as morpho...
Detection and tracking of dim signals for underwater applications
Ermeydan, Esra Şengün; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2010)
Detection and tracking of signals used in sonar applications in noisy environment is the focus of this thesis. We have concentrated on the low Signal-to-Noise Ratio (SNR) case where the conventional detection methods are not applicable. Furthermore, it is assumed that the duty cycle is relatively low. In the problem that is of concern the carrier frequency, pulse repetition interval (PRI) and the existence of the signal are not known. The unknown character of PRI makes the problem challenging since it means...
Efficient detection and tracking of salient regions for visual processing on mobile platforms
Serhat, Gülhan; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2009)
Visual Attention is an interesting concept that constantly widens its application areas in the field of image processing and computer vision. The main idea of visual attention is to find the locations on the image that are visually attractive. In this thesis, the visually attractive regions are extracted and tracked in video sequences coming from the vision systems of mobile platforms. First, the salient regions are extracted in each frame and a feature vector is constructed for each one. Then Scale Invaria...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. C. Oto, “Energy-efficient packet size optimization for cognitive radio sensor networks,” M.S. - Master of Science, Middle East Technical University, 2011.