Tag-based music recommendation systems using semantic relations and multi-domain information

Tatlı, İIpek
With the evolution of Web 2.0, most social-networking sites let their members participate in content generation. Users can label items with tags in these websites. A tag can be anything but it is actually a short description of the item. Because tags represent the reason why a user likes an item, but not how much user likes it; they are better identifiers of user profiles than ratings, which are usually numerical values assigned to items by users. Thus, the tag-based contextual representations of music tracks are concentrated in this study. Items are generally represented by vector space models in the content based recommendation systems. In tag-based recommendation systems, users and items are defined in terms of weighted vectors of social tags. When there is a large amount of tags, calculation of the items to be recommended becomes hard, because working with huge vectors is a time-consuming job. The main objective of this thesis is to represent individual tracks (songs) in lower dimensional spaces. An approach is described for creating music recommendations based on user-supplied tags that are augmented with a hierarchical structure extracted for top level genres from Dbpedia. In this structure, each genre is represented by its stylistic origins, typical instruments, derivative forms, sub genres and fusion genres. In addition to very large vector space models, insufficient number of user tags is another problem in the recommendation field. The proposed method is evaluated with different user profiling methods in case of any insufficiency in the number of user tags. User profiles are extended with multi-domain information. By using multi-domain information, the goal of making more successful and realistic predictions is achieved.
Citation Formats
İ. Tatlı, “Tag-based music recommendation systems using semantic relations and multi-domain information,” M.S. - Master of Science, Middle East Technical University, 2011.