Improvement of water sensitivity, mechanical properties and utilization of hemicellulose based polymeric materials

Download
2015
Akkuş, Merve
Hemicelluloses are sustainable resources of biopolymers with a huge potential to be converted into materials substituting petroleum-based products, but their hydrophilic characteristics pose a challenge to their industrial adoption. The main aim of this study is to decrease the water sensitivity of alkaline extracted xylan-based corn cob hemicelluloses (xylans) by heat-treatment and acetylation also by addressing their extrusion processing with sorbitol, glycerol and blends. Heat-treatment resulted in extruded strips with less moisture uptake, less normalized water vapor transfer rate (NWVTR) and enhanced mechanical properties, but without any significant change in their water solubilities. Acetylation was studied by exploiting the potassium acetate (KAc) salt that is formed during the alkaline extraction, which is usually removed. Moisture uptake, water solubility, and NWVTR of KAc containing acetylated xylans decreased significantly, with an increase in mechanical properties and thermal stability, showing that acetylation with KAc is an efficient method without salt purification steps and toxic catalysts like pyridine. Extrusion of xylans with sorbitol and glycerol was studied alternative to the plasticization by moisture conditioning where both plasticizers rendered xylans extrudable. Similar to the effect of KAc, vi acetylation carried out in the presence of sorbitol and glycerol resulted in reduced water solubilities; however the mechanical properties were only enhanced for glycerol containing strips. Xylan-and-polyvinyl alcohol (PVA) blends and their heat treatment and acetylation were also studied to reduce their water sensitivity. Extrusion of xylan/PVA blends was successful which might increase the industrial utilization of xylans, but their heat treatment and acetylation resulted in brittle strips

Suggestions

Investigation of processing parameters on production of hemicellulose based films from different agricultural residues via extrusion
Akınalan, Büşra; Bölükbaşı, Ufuk; Özkan, Necati; Department of Chemical Engineering (2014)
Today, due to the environmental concerns about petroleum based polymers, the use of renewable polymers including polysaccharides in food packaging applications is increasing rapidly. In the present study, hemicellulose was extracted from corn cobs, wheat straw and sunflower stalks, and two different techniques, solvent casting and extrusion, were utilized for biodegradable film production. Films produced from different types of biomasses were compared in terms of their mechanical, thermal and morphological ...
Optimization of the fermentation parameters to maximize the production of cellulases and xylanases using DDGS as the main feedstock in stirred tank bioreactors
Iram, Attia; Çekmecelioğlu, Deniz; Demirci, Ali (2022-10-01)
© 2022 Elsevier LtdLignocellulolytic enzymes such as cellulase and xylanases are needed on the industrial scales for low-cost production of biofuels and the other value-added products from lignocellulosic biomass such as distillers' dried grains with solubles (DDGS). Optimization of fermentation variables such as agitation, aeration, and inoculum size for fungal enzyme production by submerged fermentation can enhance the enzyme production levels. Therefore, this research focused on the statistical optimizat...
Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms
Abbas, Qumber; Yousaf, Balal; Ullah, Habib; Ali, Muhammad Ubaid; Ok, Yong Sik; Rinklebe, Joerg (2020-12-01)
The rapid development in nanotechnology and incorporation of engineered nano-particles (ENPs) in a wide range of consumer products releasing the massive quantities of ENPs in different environmental compartments. The released ENPs from nano-enabled products during their life cycle raising environmental health and safety issues. This review addresses the recent state of knowledge regarding the ENPs ecotoxicity to various organisms lying at different trophic levels. Studies show that reactive oxygen species (...
Optimization of the fermentation parameters to maximize the production of cellulases and xylanases using DDGS as the main feedstock in stirred tank bioreactors
Iram, Attia; Çekmecelioğlu, Deniz; Demirci, Ali (2022-01-01)
Lignocellulolytic enzymes such as cellulases and xylanases are needed on the industrial scales for low cost production of biofuels and the other value-added products from lignocellulosic biomass such as distillers' dried grains with solubles (DDGS). Optimization of fermentation variables such as agitation, aeration, and inoculum size for fungal enzyme production by submerged fermentation can enhance the enzyme production levels. Therefore, this research focuses on the statistical optimization of fungal inoc...
Ab initio modelling and investigation of the effects of magnesium oxide surface modifications on single atom catalysis systems
Kallem, Aydoğa; Toffoli, Hande; Canbay, Cahit; Department of Micro and Nanotechnology (2023-1-23)
An emerging technology, namely Single Atom Catalysts (SACs) have the potential to bridge the positive characteristics of both heterogenous and homogenous catalysts. In order to create more efficient SACs, it is necessary to understand the metal support interaction (MSI) at the molecular level, which seriously affects the performance of SACs. In this study, the effects of surface modifications on the catalytic performance of SACs were examined via Density Functional Theory (DFT) to gain a deeper understandin...
Citation Formats
M. Akkuş, “Improvement of water sensitivity, mechanical properties and utilization of hemicellulose based polymeric materials,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.