Material and device characterization of ZnİnSe2 and Cu0.5Ag0.5İnSe2 thin films for photovoltaic applications

Download
2016
Güllü, Hasan Hüseyin
In this work, material and device characterization of n-type ZnInSe2 (ZIS) and p-type Cu0.5Ag0.5InSe2 (CAIS) polycrystalline thin films were investigated under the aim of possible photovoltaic applications. ZIS polycrystalline structure is a ternary chalcopyrite semiconductor belongs to the group of II-III-VI compounds with the interest of II-VI binary analog of ZnSe structure. Similar to its binary analogs, it has a high band gap value, however low resistivity values compared to ZnSe structure, so that it can be promising material as a window layer. On the other hand, CAIS polycrystalline thin film structure belongs to quaternary chalcopyrite semiconductor compounds and contains both of the elements in the CuInSe2 (CIS) and AgInSe2 (AIS) ternary chalcopyrite structures. Therefore, it is expected to have a similar characteristics with them, such as direct band gap, and high absorption coefficients. This indicates that it can be suitable to use as an absorber layer in the photovoltaic applications. Under the aim of material characterization of these thin film layers, they were deposited on soda lime glass substrates with the evaporation of pure elemental sources by using physical thermal evaporation technique. During the deposition process, the substrate temperature was kept at about 200 °C. The thin films were characterized firstly in as-grown form, and then annealed under the nitrogen environment to deduce the effects of annealing on the structural, electrical and optical properties of the deposited thin films. In addition to this, diode behaviors and basic diode parameters of these films were characterized. The heterostructure was produced by depositing the films on the Si-wafer having appropriate conductivity type. After completing all material and device characterization steps, as a final aim, ITO/n-ZIS/p-CAIS/In hetero-structure were fabricated as a solar cell application of the combination of these film structures. Detailed electrical characterization of this hetero-junction was performed by the help of temperature dependent current-voltage (I-V) and frequency dependent capacitance-voltage (C-V) measurements to investigate the device characteristics and to determine dominant conduction mechanism in this sandwich structure. Wavelength dependent I-V measurements were also performed to investigate the photo-transport properties. To determine photo-spectral working range of the junction, the spectral photo-response measurements were carried out in the spectral range of 300-1200 nm. This measurement was also performed in order to see the effects and contributions of the film layers on this device structure. Moreover, at room temperature, the photovoltaic characteristics of the deposited hetero-junction were investigated under different illumination intensities varying in between 20 to 115 mW/cm2.

Suggestions

Optical and electrical characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films
Gullu, H. H.; Bayrakli, O.; Parlak, Mehmet (2017-10-01)
In this study, optical and electrical characteristics of the Cu0.5Ag0.5InSe2 (CAIS) polycrystalline thin films were investigated. They were deposited on soda lime glass substrates with the evaporation of pure elemental sources by using physical thermal evaporation technique at 200 degrees C substrate temperature. The thin films were characterized firstly in as-grown form, and then annealed under the nitrogen environment to deduce the effects of annealing on the optical and electrical properties of the depos...
Preparation of lead free BZT-BCT thin films by chemical solution deposition and their characterization
Çeltikçi, Barış; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2012)
In the presented thesis, lead-free Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 (BZT-BCT) thin films were deposited on Pt/TiO2/SiO2/Si substrates using chemical solution deposition method and then the effect of process parameters were investigated to obtain optimum parameters of these lead-free thin films. The phase was selected near to the morphotropic phase boundary (MPH) to increase the number of polarization directions where rhombohedral and tetragonal phases exist together. In this study, the effect of sintering ...
Fabrication and doping of thin crystalline Si films prepared by e-beam evaporation on glass substrate
Sedani, Salar Habibpur; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2013)
In this thesis study, fabrication and doping of silicon thin films prepared by electron beam evaporation equipped with effusion cells for solar cell applications have been investigated. Thin film amorphous Si (a-Si) layers have been fabricated by the electron beam evaporator and simultaneously doped with boron (B) and phosphorous (P) using effusion cells. Samples were prepared on glass substrates for the future solar cell operations. Following the deposition of a-Si thin film, crystallization of the films h...
Energy transfer and 1.54 mu m emission in amorphous silicon nitride films
Yerci, Selçuk; Kucheyev, S. O.; VAN BUUREN, TONY; Basu, S. N.; Dal Negro, L. (2009-07-20)
Er-doped amorphous silicon nitride films with various Si concentrations (Er:SiNx) were fabricated by reactive magnetron cosputtering followed by thermal annealing. The effects of Si concentrations and annealing temperatures were investigated in relation to Er emission and excitation processes. Efficient excitation of Er ions was demonstrated within a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er:SiNx. A systematic optimization of the 1.54 mu m emission was pe...
Co-60 gamma irradiation influences on physical, chemical and electrical characteristics of HfO2/Si thin films
KAYA, ŞENOL; Yıldız, İlker; LÖK, RAMAZAN; YILMAZ, ERCAN (Elsevier BV, 2018-09-01)
Co-60 gamma irradiation effects on physical, chemical and electrical characteristics of HfO2/Si thin films have been investigated in details. The variations on the crystallographic structure and surface morphology of the films under irradiation exposures were characterized by using X-ray diffractions (XRD) and Atomic Force Microscopy (AFM) measurements. The irradiation influences on the electrochemical structure of the films were analyzed by X-ray photoelectron spectroscopy (XPS) for various depths of the H...
Citation Formats
H. H. Güllü, “Material and device characterization of ZnİnSe2 and Cu0.5Ag0.5İnSe2 thin films for photovoltaic applications,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.