Material and device characterization of ZnİnSe2 and Cu0.5Ag0.5İnSe2 thin films for photovoltaic applications

Download
2016
Güllü, Hasan Hüseyin
In this work, material and device characterization of n-type ZnInSe2 (ZIS) and p-type Cu0.5Ag0.5InSe2 (CAIS) polycrystalline thin films were investigated under the aim of possible photovoltaic applications. ZIS polycrystalline structure is a ternary chalcopyrite semiconductor belongs to the group of II-III-VI compounds with the interest of II-VI binary analog of ZnSe structure. Similar to its binary analogs, it has a high band gap value, however low resistivity values compared to ZnSe structure, so that it can be promising material as a window layer. On the other hand, CAIS polycrystalline thin film structure belongs to quaternary chalcopyrite semiconductor compounds and contains both of the elements in the CuInSe2 (CIS) and AgInSe2 (AIS) ternary chalcopyrite structures. Therefore, it is expected to have a similar characteristics with them, such as direct band gap, and high absorption coefficients. This indicates that it can be suitable to use as an absorber layer in the photovoltaic applications. Under the aim of material characterization of these thin film layers, they were deposited on soda lime glass substrates with the evaporation of pure elemental sources by using physical thermal evaporation technique. During the deposition process, the substrate temperature was kept at about 200 °C. The thin films were characterized firstly in as-grown form, and then annealed under the nitrogen environment to deduce the effects of annealing on the structural, electrical and optical properties of the deposited thin films. In addition to this, diode behaviors and basic diode parameters of these films were characterized. The heterostructure was produced by depositing the films on the Si-wafer having appropriate conductivity type. After completing all material and device characterization steps, as a final aim, ITO/n-ZIS/p-CAIS/In hetero-structure were fabricated as a solar cell application of the combination of these film structures. Detailed electrical characterization of this hetero-junction was performed by the help of temperature dependent current-voltage (I-V) and frequency dependent capacitance-voltage (C-V) measurements to investigate the device characteristics and to determine dominant conduction mechanism in this sandwich structure. Wavelength dependent I-V measurements were also performed to investigate the photo-transport properties. To determine photo-spectral working range of the junction, the spectral photo-response measurements were carried out in the spectral range of 300-1200 nm. This measurement was also performed in order to see the effects and contributions of the film layers on this device structure. Moreover, at room temperature, the photovoltaic characteristics of the deposited hetero-junction were investigated under different illumination intensities varying in between 20 to 115 mW/cm2.

Suggestions

Synthesis of new conjugated donor-acceptor type polymers for photovoltaic device applications
Akpınar, Hava Zekiye; Toppare, Levent Kamil; Özkan, Necati; Department of Polymer Science and Technology (2015)
Electrochromism and photoelectric effect are the mostly investigated areas of conducting polymers. In electrochromism, electrochemical parameters of the polymers are firstly examined. Spectroelectrochemical studies are performed with specified wavelengths. Parameters, such as optical contrast and switching times of the polymer films are explored. In bulk heterojunction polymer solar cells, semiconducting polymer materials in combination with fullerene are used as the active layer. Photons are absorbed by co...
Fabrication and doping of thin crystalline Si films prepared by e-beam evaporation on glass substrate
Sedani, Salar Habibpur; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2013)
In this thesis study, fabrication and doping of silicon thin films prepared by electron beam evaporation equipped with effusion cells for solar cell applications have been investigated. Thin film amorphous Si (a-Si) layers have been fabricated by the electron beam evaporator and simultaneously doped with boron (B) and phosphorous (P) using effusion cells. Samples were prepared on glass substrates for the future solar cell operations. Following the deposition of a-Si thin film, crystallization of the films h...
Optical and electrical characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films
Gullu, H. H.; Bayrakli, O.; Parlak, Mehmet (2017-10-01)
In this study, optical and electrical characteristics of the Cu0.5Ag0.5InSe2 (CAIS) polycrystalline thin films were investigated. They were deposited on soda lime glass substrates with the evaporation of pure elemental sources by using physical thermal evaporation technique at 200 degrees C substrate temperature. The thin films were characterized firstly in as-grown form, and then annealed under the nitrogen environment to deduce the effects of annealing on the optical and electrical properties of the depos...
Modeling and optimization of PECVD processes and equipment used for manufacturing thin film photovoltaic devices
Özkol, Engin; Kıncal, Serkan; Department of Chemical Engineering (2014)
Plasma enhanced chemical vapor deposition (PECVD) is a common technique used in thin film based device fabrication. Operation conditions of a PECVD reactor need to be optimized in terms of deposition conditions as well as plasma cleaning procedures to deliver desired deposited material qualities. In addition, interactions with external support systems such as gas lines and cabinet, compressors and utility production units need to be understood and characterized. Modeling, whether based on fundamental princi...
Preparation of lead free BZT-BCT thin films by chemical solution deposition and their characterization
Çeltikçi, Barış; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2012)
In the presented thesis, lead-free Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 (BZT-BCT) thin films were deposited on Pt/TiO2/SiO2/Si substrates using chemical solution deposition method and then the effect of process parameters were investigated to obtain optimum parameters of these lead-free thin films. The phase was selected near to the morphotropic phase boundary (MPH) to increase the number of polarization directions where rhombohedral and tetragonal phases exist together. In this study, the effect of sintering ...
Citation Formats
H. H. Güllü, “Material and device characterization of ZnİnSe2 and Cu0.5Ag0.5İnSe2 thin films for photovoltaic applications,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.