Addressing the near-fault directivity effects for their implementation to design spectrum

Moghimi, Saed
Near-Fault Forward-Directivity (NFFD) ground motions are highly polarized and they have the potential to impose larger seismic demands on the structures. This is due to the presence of impulsive signals in the beginning of their velocity waveforms, which amplifies the response spectrum in periods close to pulse period. Different directivity models proposed recently can be used together with Ground Motion Prediction Equations (GMPEs) to estimate the response spectrum exposed to pulse-type ground motions. This study utilizes two directivity models to investigate the effect of different seismological and geometrical parameters on the amplification level that the directivity effect imposes on the response spectrum. It is shown that in Shahi and Baker (2011) (the first directivity model utilized in this study) slip rate, fault characteristic magnitude, hazard level and source-site geometric parameters play important role, on the response spectrum amplification. In Chiou and Spudich (2013) (the second directivity model), the characteristic magnitude and source-site geometry are the determining parameters. The observations from the case studies are used to set some simple rules for reflecting the forward-directivity effects on design spectra at the 475-year and 2475-year return periods. The concept of ground motion polarization (directionality) is also utilized in the determination of maximum rotated component (RotD100) for NFFD ground motions. For this purpose RotD100 is calculated for the near fault ground motions with and without forward-directivity effect and a conversion factor is proposed by taking the ratios of spectral demands of RotD100 horizontal component between pulselike and non-pulse recordings.


Derivation of site-specific UHS based on simulated ground motions and its parametric effects on building fragility
Azari Sisi, Aida; Askan Gündoğan, Ayşegül; Department of Civil Engineering (2016)
Estimation of seismic demands is essential for the purpose of structural seismic design and analyses. It is significant to obtain reliable ground motion amplitudes to estimate seismic damage on structures in a realistic manner. The ground motion simulation methodologies provide a physical approach to estimate seismic demands in the regions with sparse recording data and scarce networks. This dissertation consists of two main parts: In the first part, site-specific uniform hazard spectrum (UHS) of Erzincan r...
Investigation of seismic isolation efficiency for building structures
Özdemir, Seda; Yakut, Ahmet; Ay, Bekir Özer; Department of Earthquake Studies (2016)
The main goal of this study is to assess the efficacy of seismic isolation for building type of structures with different structural systems, namely, dual systems and moment frame systems having also different number of floors. Specific to this study, the main parameters employed for efficacy assessment will be the interstorey drift ratio and floor acceleration since both structural and non-structural damage to be occured in a system are directly related to these two parameters. To assess the variations in inter...
Ground motion prediction equations based on simulated ground motions
Gür, Kader; Askan Gündoğan, Ayşegül; Kale, Özkan; Department of Earthquake Studies (2018)
Ground Motion Prediction Equations (GMPEs) are one of the key elements in seismic hazard assessment to estimate ground motion intensity measures by basically taking into account source, path and site effects. Most of the existing predictive models are derived from databases compiled from real (or observed) ground motion data. However, in data-poor regions, a novel practice to develop new GMPEs is to use simulated or hybrid ground motion datasets for performing reliable seismic hazard analysis. Simulations o...
An Implementation of probabilistic seismic hazard analysis in selection of seismic coefficient for pseudostatic analysis of slope stability
Gedikaslan, Kübra; Yılmaz, Mustafa Tolga; Erberik, Murat Altuğ; Department of Earthquake Studies (2017)
The seismic coefficient, kh, is a seismic design parameter. This parameter defines the ratio of inertial force acting on a mass to its weight, and is practically used in pseudostatic analyses of seismic slope stability. This design parameter can be assigned by the principles of performance-based design after simplifications regarding the relationship between ground displacement and probabilistic seismic hazard. A widely used simplification is to consider Newmark's sliding block analogy for estimations of se...
Probabilistic seismic hazard assessment for east anatolian fault zone using planar source models
Menekşe, Akın; Gülerce, Zeynep; Department of Civil Engineering (2015)
The objective of this study is to perform probabilistic seismic hazard assessment (PSHA) using planar seismic source characterization models for East Anatolian Fault Zone (EAFZ) and to update the design ground motions to be used in the region. Development of planar seismic source models requires the definition of source geometry in terms of fault length, fault width, fault plane angles and segmentation points for each segment and associating the observed seismicity with defined fault systems. This complicat...
Citation Formats
S. Moghimi, “Addressing the near-fault directivity effects for their implementation to design spectrum,” Ph.D. - Doctoral Program, Middle East Technical University, 2017.