Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stationary Lifshitz black holes ofR2-corrected gravity theory
Download
index.pdf
Date
2011-12-7
Author
Sarıoğlu, Bahtiyar Özgür
Metadata
Show full item record
Item Usage Stats
101
views
115
downloads
Cite This
In this short note, I present a generalization of a set of static D-dimensional (D >= 3) Lifshitz black holes, which are solutions of the gravitational model obtained by amending the cosmological Einstein theory with the addition of only the curvature-scalar-squared term and that are described by two parameters, to a more general class of exact, analytic solutions that involves an additional parameter which now renders them stationary. In the special D = 3 and the dynamical exponent z = 1 cases, the parameters can be adjusted so that the solution becomes identical to the celebrated BTZ black hole metric.
URI
https://hdl.handle.net/11511/28350
Journal
Physical Review D
DOI
https://doi.org/10.1103/physrevd.84.127501
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Spherically symmetric solutions of Einstein plus non-polynomial gravities
Deser, S.; Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (Springer Science and Business Media LLC, 2008-01-01)
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (first) derivative order of the Einstein equations in Schwarzschild gauge. Generically, the solutions exhibit both horizons and a singularity at the origin, except for one model that forbids spherical symmetry altogether. Extensions to arbitrary dimension with a cos...
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Vector meson dominance and radiative decays of heavy spin-3/2 baryons to heavy spin-1/2 baryons
Alıyev, Tahmasıb; Savcı, Mustafa (2012-04-10)
Using the calculated values of the strong coupling constants of the heavy sextet spin-3/2 baryons to sextet and antitriplet heavy spin-1/2 baryons with light vector mesons within the light cone QCD sum rules method, and vector meson dominance assumption, the radiative decay widths are calculated. These widths are compared with the "direct" radiative decay widths predicted in the framework of the light cone QCD sum rules.
Tensor form factors of B -> K-1 transition from QCD light cone sum rules
Alıyev, Tahmasıb; Savcı, Mustafa (Elsevier BV, 2011-05-30)
The tensor form factors of B into p-wave axial vector meson transition are calculated within light cone QCD sum rules method. The parametrizations of the tensor form factors based on the series expansion are presented.
Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (2010-01-01)
The Dirac equation is solved approximately for the Woods-Saxon potential and a tensor potential with the arbitrary spin-orbit coupling quantum number kappa under pseudospin and spin symmetry. The energy eigenvalues and the Dirac spinors are obtained in terms of hypergeometric functions. The energy eigenvalues are calculated numerically.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ö. Sarıoğlu, “Stationary Lifshitz black holes ofR2-corrected gravity theory,”
Physical Review D
, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28350.