Li-yorke chaos in hybrid systems on a time scale

Download
2015-12-30
Akhmet, Marat
Fen, Mehmet Onur
By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li-Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.
Internatıonal Journal Of Bıfurcatıon And Chaos

Suggestions

The finite element method over a simple stabilizing grid applied to fluid flow problems
Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
Oscillatory behavior of integro-dynamic and integral equations on time scales
Grace, S. R.; Zafer, Ağacık (2014-02-01)
By making use of asymptotic properties of nonoscillatory solutions, the oscillation behavior of solutions for the integro-dynamic equation
On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems
AKBAŞ, MERAL; Kaya, Serap; Kaya Merdan, Songül (2017-07-01)
We prove long-time stability of linearly extrapolated BDF2 (BDF2LE) timestepping methods, together with finite element spatial discretizations, for incompressible Navier-Stokes equations (NSE) and related multiphysics problems. For the NSE, Boussinesq, and magnetohydrodynamics schemes, we prove unconditional long time L-2 stability, provided external forces (and sources) are uniformly bounded in time. We also provide numerical experiments to compare stability of BDF2LE to linearly extrapolated Crank-Nicolso...
Differential equations on variable time scales
Akhmet, Marat (2009-02-01)
We introduce a class of differential equations on variable time scales with a transition condition between two consecutive parts of the scale. Conditions for existence and uniqueness of solutions are obtained. Periodicity, boundedness and stability of solutions are considered. The method of investigation is by means of two successive reductions: B-equivalence of the system [E. Akalfn, M.U. Akhmet, The principles of B-smooth discontinuous flows, Computers and Mathematics with Applications 49 (2005) 981-995; ...
Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
Citation Formats
M. Akhmet and M. O. Fen, “Li-yorke chaos in hybrid systems on a time scale,” Internatıonal Journal Of Bıfurcatıon And Chaos, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28630.