Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Intermolecular acetaldehyde and dimethoxymethane formation mechanisms via ethenol and methoxymethylene precursors in reactions of atomic carbon with methanol: a computational study
Date
2012-01-01
Author
DEDE, YAVUZ
Özkan, İlker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Atomic carbon, a reactive intermediate abundant in the interstellar medium (ISM) can participate in various energetically demanding reactions in its extremely long living (69 min) first excited singlet state (D-1). Several studies on reactions of oxygen containing species with carbon atoms have been reported, however mechanistic details of the title reaction remain obscure. We report here quantum chemical studies on reactions of methanol with P-3 and D-1 carbon atoms at the CCSD(T)/cc-pVTZ level of theory, with which experimentally well known facile CO production, intermolecular acetaldehyde formation, and intermolecular dimethoxymethane production mechanisms are explained. Energetics of the fragmentation, O-H insertion, C-H insertion, and O-C insertion channels on the triplet and singlet surfaces are studied. The CO production mechanism by C (D-1) is identified as an oxygen abstraction and a triplet PES seems non-operative. Presenting novel features for the intermolecular reaction channels, current findings may be applicable to C + ROR reactions.
Subject Keywords
Thermochemistry
,
Molecules
,
Chemistry
,
Model
,
Interstellar ices
,
C(P-3)
URI
https://hdl.handle.net/11511/29990
Journal
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
DOI
https://doi.org/10.1039/c2cp23127a
Collections
Graduate School of Natural and Applied Sciences, Article