Dark fermentative hydrogen production from sucrose and molasses

2017-10-25
TUNÇAY, EKİN GÜNEŞ
Bayramoğlu, Tuba Hande
EROĞLU, İNCİ
Gündüz, Ufuk
There are many factors affecting the dark fermentative hydrogen production. The interaction of these factors, that is, their combined effects, should be investigated for better design of the systems with stable and higher hydrogen yields. This study aimed to investigate the combined effects of initial substrate, pH, and biomass (or initial substrate to biomass) values on hydrogen production from sucrose and sugar-beet molasses. Therefore, optimum initial chemical oxygen demand (COD), pH, and volatile suspended solids (VSS) or initial substrate to biomass (VSS) ratio (S/X-o) values leading to the highest dark fermentative hydrogen production were investigated in batch reactors. An experimental design approach (response surface methodology) was used. Results revealed that when sucrose was the substrate, maximum hydrogen production yield (HY) of 2.3 mol H-2/mol sucroseadded was obtained at initial pH of 7 and COD of 10 g/L. Initial S/Xo values studied (4-20 g COD/g VSS) had no effect on HY, while the initial pH was found as the parameter mostly affecting both HY and hydrogen production rate (HPR). When substrate was molasses, initial COD concentration was the only variable affecting HY and HPR. Maximum of both was achieved at 10 g/L initial COD. Initial VSS values studied (2.5-7.5 g/L) had no effect on HPR and HY. This study also indicated that molasses leads to homoacetogenesis for potentially containing intrinsic microorganism and/or natural constituents; thus, sucrose is more advantageous for hydrogen production via fermentation. Homoacetogenesis should be prevented for effective optimization via response surface methodology, if substrate is a natural carbon source potential to have intrinsic microorganisms. Copyright (C) 2017 John Wiley & Sons, Ltd.
INTERNATIONAL JOURNAL OF ENERGY RESEARCH

Suggestions

Biohydrogen production from beet molasses by sequential dark and photofermentation
Ozgur, Ebru; Mars, Astrid E.; Peksel, Beguem; Louwerse, Annemarie; Yucel, Meral; Gündüz, Ufuk; Claassen, Pieternel A. M.; Eroglu, Inci (2010-01-01)
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup(-) mutant, and Rhodopseudomonas palustris) were used for t...
Photofermentative Hydrogen Production
Sağır, Emrah; Hallenbeck, Patrick C. (2019-01-01)
There are many biological paths to hydrogen production, each with potential advantages, but also with its own challenges to implementation. The nonsulfur photosynthetic bacteria use a process termed as photofermentation to harness solar energy for the close to stoichiometric conversion of various carbon substrates to hydrogen, releasing carbon dioxide. These organisms can potentially use various feedstocks, but are particularly adept at the light-driven production of hydrogen from organic acids. Thus they a...
Long-term stable hydrogen production from acetate using immobilized Rhodobacter capsulatus in a panel photobioreactor
Elkahlout, Kamal; Sagir, Emrah; Alipour, Siamak; Koku, Harun; Gündüz, Ufuk; Eroglu, Inci; Yucel, Meral (2019-07-12)
Biological hydrogen production is attractive since renewable resources are utilized for hydrogen production. In this study, a novel panel photobioreactor (1.4 L) was constructed from Plexiglas with a network of nylon fabric support for agar immobilized bacteria complex. Two strains of Rhodobacter capsulatus DSM 1710 wild-type strain and Rhodobacter capsulatus YO3 (hup(-), uptake hydrogenase deleted mutant) with cell concentrations of 2.5 and 5.0 mg dcw/mL agar, respectively were entrapped by 4% (w/v) of aga...
Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents
Uyar, Basar; Eroglu, Inci; Yucel, Meral; Gündüz, Ufuk (2009-05-01)
In the present study, the growth and hydrogen production of Rhodobacter sphaeroides O.U. 001, was investigated in media containing five different volatile fatty acids (VIA) individually (malate, acetate, propionate, butyrate and lactate) and in media containing mixtures of these acids that reflect the composition of dark fermentation effluents. The highest hydrogen production rate was obtained in malate (24 ml(hydrogen)/I(reactor)h) and the highest biomass concentration was obtained in acetate containing me...
Photofermentative hydrogen production from molasses in tubular photobioreactor with pH control
Oflaz, Fatma Betül; Koku, Harun; Department of Chemical Engineering (2019)
Biological hydrogen production has the potential to supply hydrogen from various wastes as feedstock and operation under ambient conditions. In order to obtain cost effective production, photobioreactors (PBRs) that can operate for long durations while utilizing waste are necessary. Two primary issues limiting the duration are decrease in pH and the non-optimal C/N ratio. The main aim of this study was to construct and operate a pH control system for a pilot scale photobioreactor (20 L) to achieve prolonged...
Citation Formats
E. G. TUNÇAY, T. H. Bayramoğlu, İ. EROĞLU, and U. Gündüz, “Dark fermentative hydrogen production from sucrose and molasses,” INTERNATIONAL JOURNAL OF ENERGY RESEARCH, pp. 1891–1902, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30039.