Camera tamper detection using wavelet analysis for video surveillance

Download
2007-09-07
AKSAY, Anil
Temizel, Alptekin
Cetin, A. Enis
It is generally accepted that video surveillance system operators lose their concentration after a short period of time and may miss important events taking place. In addition, many surveillance systems are frequently left unattended. Because of these reasons, automated analysis of the live video feed and automatic detection of suspicious activity have recently gained importance. To prevent capture of their images, criminals resort to several techniques such as deliberately obscuring the camera view, covering the lens with a foreign object, spraying or defocusing the camera lens. In this paper, we propose some computationally efficient wavelet domain methods for rapid camera tamper detection and identify some real-life problems and propose solutions to these.

Suggestions

Visual privacy protection using false colors
Çiftçi, Serdar; Akyüz, Ahmet Oğuz; Department of Computer Engineering (2017)
Visual privacy protection (VPP) in video surveillance is an important problem, which is likely to be even more important with the rapid expansion of video surveillance. Although many VPP algorithms exist, none of them simultaneously meets all the desired characteristics of a good privacy protection algorithm. The chief limitation of existing VPP methods is that they require regions of interest (ROI) to be automatically detected or manually marked, both of which are difficult to achieve and prone to errors. I...
Pedestrian zone anomaly detection by non-parametric temporal modelling
Gündüz, Ayşe Elvan; Taşkaya Temizel, Tuğba; Temizel, Alptekin (2014-08-29)
With the increasing focus on safety and security in public areas, anomaly detection in video surveillance systems has become increasingly more important. In this paper, we describe a method that models the temporal behavior and detects behavioral anomalies in the scene using probabilistic graphical models. The Coupled Hidden Markov Model (CHMM) method that we use shows that sparse features obtained via feature detection and description algorithms are suitable for modeling the temporal behavior patterns and ...
Human presence detection in emergency situations using deep learning based audio-visual systems
Geneci, İzlen; Günel Kılıç, Banu; Bozşahin, Hüseyin Cem; Department of Cognitive Sciences (2022-8-24)
The significance of emergency event detection in surveillance systems has drawn the attention of researchers in recent years. Existing methods mostly depend on visual data to identify any abnormal events since only visual sensors are frequently put in public settings. On the other hand, in an emergency, sound information may be exploited. When eyesight is occluded, audio waves can penetrate to some extent. Applications for visual analysis may be helpful when there is noise in the audio and the scene is cong...
Covert channel detection using machine learning methods
Çavuşoğlu, İmge Gamze; Alemdar, Hande; Department of Computer Engineering (2019)
A covert channel is a communication method that misuses legitimate resources to bypass intrusion detection systems. They can be used to do illegal work like leaking classified (or sensitive) data or sending commands to malware bots. Network timing channels are a type of these channels that use inter-arrival times between network packets to encode the data to be sent. Although these types of channels are hard to detect, they are not used frequently due to their low capacity and sensitivity to the network con...
Covert Channel Detection Using Machine Learning
Çavuşoğlu, İmge Gamze; Alemdar, Hande; Onur, Ertan (2021-01-07)
A covert channel is a communication method that misuses legitimate resources to bypass intrusion detection systems. They can be used to do illegal work like leaking classified (or sensitive) data or sending commands to malware bots. Network timing channels are a type of these channels that use inter-arrival times between network packets to encode the data to be sent. In this study, we worked with two types of network covert channels: Fixed Interval and Jitterbug. We were able to distinguish these channels f...
Citation Formats
A. AKSAY, A. Temizel, and A. E. Cetin, “Camera tamper detection using wavelet analysis for video surveillance,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30182.