Hide/Show Apps

Camera tamper detection using wavelet analysis for video surveillance

Temizel, Alptekin
Cetin, A. Enis
It is generally accepted that video surveillance system operators lose their concentration after a short period of time and may miss important events taking place. In addition, many surveillance systems are frequently left unattended. Because of these reasons, automated analysis of the live video feed and automatic detection of suspicious activity have recently gained importance. To prevent capture of their images, criminals resort to several techniques such as deliberately obscuring the camera view, covering the lens with a foreign object, spraying or defocusing the camera lens. In this paper, we propose some computationally efficient wavelet domain methods for rapid camera tamper detection and identify some real-life problems and propose solutions to these.