Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
High-order integral nodal discontinuous Gegenbauer-Galerkin method for solving viscous Burgers' equation
Date
2019-10-03
Author
Elgindy, Kareem T.
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
164
views
0
downloads
Cite This
We present a high-order integral nodal discontinuous Galerkin (DG) method to solve Burgers' equation. The method lays the first stone of a novel class of integral nodal DG methods exhibiting exponential convergence rates in both spatial and temporal directions; thus, producing highly accurate approximations using a significantly small number of collocation points. This useful result is proven theoretically under some mild conditions. The paper also introduces the first rigorous rounding-error analysis for the Gegenbauer integration matrices proving their stability feature. Two useful strategies were proposed to significantly reduce the errors in certain special cases and to handle problems with relatively large time domains. Extensive numerical comparisons with other competitive numerical methods manifest the superior accuracy and efficiency of the proposed numerical method. The established numerical method is so accurate in general for sufficiently smooth solutions to the extent that exact, or nearly exact solutions can be achieved using relatively small collocation points as the viscosity parameter B --> 0.
Subject Keywords
Barycentric
,
Burgers' equation
,
Discontinuous Galerkin
,
Gegenbauer-Gauss
,
Gegenbauer polynomials
,
Integration matrix
URI
https://hdl.handle.net/11511/30352
Journal
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
DOI
https://doi.org/10.1080/00207160.2018.1554860
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
An Efficient Domain Cascading Approach for Linear Discontinuous Galerkin Schemes
Doğan, Doğanay; Kuzuoğlu, Mustafa (null; 2018-04-09)
A discontinuous Galerkin finite element method based domain decomposition technique is presented for solving Maxwell's Equations. The method can be implemented with either time domain or frequency domain solutions for sub-domains. The problem in each sub domain is solved using open boundaries. A connection in frequency domain is then established between the solved outward and inward fluxes of the sub-domains touching each other. No field continuity is imposed giving the technique high computational efficien...
Energy Stable Discontinuous Galerkin Finite Element Method for the Allen-Cahn Equation
Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse; Yücel, Hamdullah (2018-05-01)
In this paper, we investigate numerical solution of Allen-Cahn equation with constant and degenerate mobility, and with polynomial and logarithmic energy functionals. We discretize the model equation by symmetric interior penalty Galerkin (SIPG) method in space, and by average vector field (AVF) method in time. We show that the energy stable AVF method as the time integrator for gradient systems like the Allen-Cahn equation satisfies the energy decreasing property for fully discrete scheme. Numerical result...
Distributed optimal control of viscous Burgers' equation via a high-order, linearization, integral, nodal discontinuous Gegenbauer-Galerkin method
Elgindy, Kareem T.; Karasözen, Bülent (2020-01-01)
We developed a novel direct optimization method to solve distributed optimal control of viscous Burgers' equation over a finite-time horizon by minimizing the distance between the state function and a desired target state profile along with the energy of the control. Through a novel linearization strategy, well-conditioned integral reformulations, optimal Gegenbauer barycentric quadratures, and nodal discontinuous Galerkin discretizations, the method reduces such optimal control problems into finite-dimensi...
Development of discontinuous galerkin method 2 dimensional flow solver
Güngör, Osman; Özgen, Serkan; Department of Aerospace Engineering (2019)
In this work, 2 dimensional flow solutions of Euler equations are presented from the developed discontinuous Galerkin method finite element method (DGFEM) solver on unstructured grids. Euler equations govern the inviscid and adiabatic flows with a set of hyperbolic equations. The discretization of governing equations for DGFEM is given in detail. The DGFEM discretization provides high order solutions on an element-compact stencil hence only elements having common boundary are coupled. The required elementwise ...
Moving mesh discontinuous Galerkin methods for PDEs with traveling waves
UZUNCA, MURAT; Karasözen, Bülent; Kucukseyhan, T. (2017-01-01)
In this paper, a moving mesh discontinuous Galerkin (dG) method is developed for nonlinear partial differential equations (PDEs) with traveling wave solutions. The moving mesh strategy for one dimensional PDEs is based on the rezoning approach which decouples the solution of the PDE from the moving mesh equation. We show that the dG moving mesh method is able to resolve sharp wave fronts and wave speeds accurately for the optimal, arc-length and curvature monitor functions. Numerical results reveal the effi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. T. Elgindy and B. Karasözen, “High-order integral nodal discontinuous Gegenbauer-Galerkin method for solving viscous Burgers’ equation,”
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
, pp. 2039–2078, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30352.