Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the group of automorphisms of an algebraic function field over an algebraically closed constant field.
Date
1970
Author
Dabbagh, Muhammad
Metadata
Show full item record
Item Usage Stats
37
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/3037
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On the Schur indices of finite groups.
Sharary, Ahmad; Igeda, M. G.; Department of Mathematics (1981)
On the moduli spaces of fiber bundles of curves of genus >= 2
Onsiper, H (Springer Science and Business Media LLC, 2000-11-02)
We determine the moduli spaces parametrizing analytic fiber bundles of curves of genus g greater than or equal to 2 over curves of genus g(b) > (g + 1)/2.
On the generating graphs of symmetric groups
Erdem, Fuat (Walter de Gruyter GmbH, 2018-07-01)
Let S-n and A(n) be the symmetric and alternating groups of degree n, respectively. Breuer, Guralnick, Lucchini, Maroti and Nagy proved that the generating graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian for sufficiently large n. However, their proof provided no information as to how large n needs to be. We prove that the graphs Gamma(S-n) and Gamma(A(n)) are Hamiltonian provided that n (3) 107.
On the generating graphs of the symmetric and alternating groups
Erdem, Fuat; Ercan, Gülin; Maróti, Attila; Department of Mathematics (2018)
Dixon showed that the probability that a random pair of elements in the symmetric group $S_n$ generates $S_n$ or the alternating group $A_n$ tends to $1$ as $n to infty$. (A generalization of this result was given by Babai and Hayes.) The generating graph $Gamma(G)$ of a finite group $G$ is defined to be the simple graph on the set of non-identity elements of $G$ with the property that two elements are connected by and edge if and only if they generate $G$. The purpose of this thesis is to study the graphs ...
On the structure of universal non-IBN rings Vn,m.
Kirezci, Murat; Arf, Cahit; Department of Mathematics (1981)
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Dabbagh, “On the group of automorphisms of an algebraic function field over an algebraically closed constant field.,” Middle East Technical University, 1970.