A Circulating Bioreactor Reprograms Cancer Cells Toward a More Mesenchymal Niche

2020-02-01
Calamak, Semih
Ermiş Şen, Menekşe
Sun, Han
Islam, Saiful
Sikora, Michael
Nguyen, Michelle
Hasırcı, Vasıf Nejat
Steinmetz, Lars M.
Demirci, Utkan
Cancer is a complex and heterogeneous disease, and cancer cells dynamically interact with the mechanical microenvironment such as hydrostatic pressure, fluid shear, and interstitial flow. These factors play an essential role in cell fate and circulating tumor cell heterogeneity, and can influence the cellular phenotype. In this study, a peristaltic continuous flow reactor is designed and applied to HCT-116 colorectal carcinoma cells to mimic the fluid dynamics of circulation. With this intervention, a CD44/CD24-cell subpopulation emerges, and 100 genes are significantly regulated. The expression of cells at 4 h in the flow reactor is very similar to TGF-ss treatment, which is an inducer of epithelial-mesenchymal transition. ATF3 and SERPINE1 are significantly upregulated in these groups, suggesting that the mesenchymal transition is induced through this signaling pathway. This flow reactor model is satisfactory on its own to reprogram colorectal cancer cells toward a more mesenchymal niche mimicking circulation of the blood.
ADVANCED BIOSYSTEMS

Suggestions

Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis
Arslan, Zeynep Caglayan; Yalcin, Yagmur Demircan; Külah, Haluk (2022-04-01)
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the in...
Detection of rare cell types and patient prognosis in liver cancer
Şengül Babal, Simge; Yıldız, Cemal; Pır, Pınar (Orta Doğu Teknik Üniversitesi Enformatik Enstitüsü; 2022-10)
Cancer is a disease that emerges as a result of complex aberrant processes involving cells that grow and divide uncontrollably and has many patient-specific characteristics. Mutations in genes or changes in the expression of transcripts produce cellular heterogeneity, cancer cells, and tumors, and finally invade other healthy tissues [1]. Primary liver cancer is the second most lethal malignancy worldwide and comprises many molecularly unique subtypes and a highly diverse microenvironment [2]. Among this di...
A comparative study on EpCAM antibody immobilization on gold surfaces and microfluidic channels for the detection of circulating tumor cells
Cetin, Didem; Okan, Meltem; Bat, Erhan; Külah, Haluk (2020-04-01)
Detection of circulating tumor cells (CTCs) from the bloodstream holds great importance to diagnose cancer at early stages. However, CTCs being extremely rare in blood makes them difficult to reach. In this paper, we introduced different surface modification techniques for the enrichment and detection of MCF-7 in microfluidic biosensor applications using gold surface and EpCAM antibody. Mainly, two different mechanisms were employed to immobilize the antibodies; covalent bonding and bioaffinity interaction....
Systems-level analysis reveals multiple modulators of epithelial-mesenchymal transition and identifies DNAJB4 and CD81 as novel metastasis inducers in breast cancer
Kagiali, Zeynep Cansu Üretmen; Sanal, Erdem; Karayel, Özge; Polat, Ayşe Nur; Saatçi, Özge; Ersan, Pelin Gülizar; Trappe, Kathrin; Renard, Bernhard Y.; Önder, Tamer T.; Tunçbağ, Nurcan; Şahin, Özgür; Özlü, Nurhan (American Society for Biochemistry & Molecular Biology (ASBMB), 2019-09)
Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out...
Capture of circulating tumor cells from blood on modified gold surfaces inside the microfluidic channels
Çetin, Didem; Külah, Haluk; Department of Biomedical Engineering (2019)
Detection of circulating tumor cells (CTCs) from the bloodstream has a critical role in diagnosing and treatment of cancer. However, the number of CTCs in blood compared to other blood cells are extremely rare. In this thesis, various surface modifications strategies for detection of CTCs are studied in order to be used in the microfluidic detection systems. Functionalizing the gold surface with Self Assembled Monolayers (SAMs) used for attaching the EpCAM antibodies, which made possible to immobilize EpCAM...
Citation Formats
S. Calamak et al., “A Circulating Bioreactor Reprograms Cancer Cells Toward a More Mesenchymal Niche,” ADVANCED BIOSYSTEMS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30376.