Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Semi-IPN Chitosan/PEG Microspheres and Films for Biomedical Applications: Characterization and Sustained Release Optimization
Date
2012-09-19
Author
Gunbas, Ismail Dogan
Sezer, Umran Aydemir
GÜLÇE İZ, SULTAN
Gurhan, Ismet Deliloglu
Hasırcı, Nesrin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
94
views
0
downloads
Cite This
Micro drug carriers are one of the efficient methods for local or systemic cancer treatment. In this study, the aim was to prepare a novel semi-interpenetrated (semi-IPN) micro system by using biocompatible chitosan (CH) and polyethylene glycol (PEG). Various combinations of the systems were prepared and loaded with a model chemotherapeutic drug, methotrexate (MTX), and the effects of composition on the properties and the release behavior of microspheres were examined. Also, the mechanical and thermal properties were examined on film forms of similar compositions. Increase in cross-linking caused a decrease in particle size of CH from 144 to 91 mu m, while the addition of PEG caused an increase up to 163 mu m. Elastic modulus values of the films first increased and then decreased parallel to PEG content. In vitro studies showed faster MTX release from semi-IPN CH-PEG microspheres as compared to pure CH ones. Promising results were obtained in the development of biodegradable drug vehicles.
Subject Keywords
Hyaluronıc-acıd
,
Delıvery
,
Blend
,
Degradation
,
Carrıers
URI
https://hdl.handle.net/11511/30388
Journal
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
DOI
https://doi.org/10.1021/ie3015523
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Targeted delivery of CPG-oligodeoxynucleotide to breast cancer cells by poly-amidoamine dendrimer-modified magnetic nanoparticles
Taghavi Pourianazar, Negar; Gündüz, Ufuk; Gündüz, Güngör; Department of Biotechnology (2016)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
CpG oligodeoxynucleotide- loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells
Pourianazar, Negar Taghavi; Gündüz, Ufuk (2016-03-01)
One major application of nanotechnology in cancer treatment involves designing nanoparticles to deliver drugs, oligonucleotides, and genes to cancer cells. Nanoparticles should be engineered so that they could target and destroy tumor cells with minimal damage to healthy tissues. This research aims to develop an appropriate and efficient nanocarrier, having the ability of interacting with and delivering CpG-oligodeoxynucleotides (CpG-ODNs) to tumor cells. CpG-ODNs activate Toll-like receptor 9 (TLR9), which...
Superior Photodynamic Therapy of Colon Cancer Cells by Selenophene-BODIPY-Loaded Superparamagnetic Iron Oxide Nanoparticles
Ozvural Sertcelik, Kubra Nur; Karaman, Osman; Almammadov, Toghrul; Günbaş, Emrullah Görkem; Kolemen, Safacan; Yagci Acar, Havva; Onbasli, Kubra (2022-01-01)
© 2022 Wiley-VCH GmbH.Development of targeted nanoparticles as carriers to deliver photosensitizers to cancer cells is highly beneficial for ensuring the expected therapeutic outcome of photodynamic therapy. Herein, polyacrylic acid (PAA) coated superparamagnetic iron oxide nanoparticles (SPIONs), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) were loaded with a BODIPY-based (BOD-Se-I) photosensitizer (Cet-PAA@SPION/BOD-Se-I) to achieve enhanced and selective photodynami...
Molecular mechanisms of vincristine and paclitaxel resistance in mcf-7 cell line
Demirel Kars, Meltem; Gündüz, Ufuk; Department of Biotechnology (2008)
Resistance to broad spectrum of chemotherapeutic agents in cancer cell lines and tumors has been called multiple drug resistance (MDR). In this study, the molecular mechanisms of resistance to two anticancer agents (paclitaxel and vincristine) in mammary carcinoma cell line MCF-7 were investigated. MCF-7 cells were selected in the presence of paclitaxel and vincristine by stepwise dose increments. The cell viability and growth profiles of resistant sublines were examined. As the resistance indices increased...
Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery
Tansik, Gulistan; YAKAR, ARZU; Gündüz, Ufuk (2013-12-07)
One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an exter...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. D. Gunbas, U. A. Sezer, S. GÜLÇE İZ, I. D. Gurhan, and N. Hasırcı, “Semi-IPN Chitosan/PEG Microspheres and Films for Biomedical Applications: Characterization and Sustained Release Optimization,”
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
, pp. 11946–11954, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30388.