Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example

2009-01-01
Tunçbağ, Nurcan
Gursoy, Attila
Keskin, Ozlem
Nussinov, Ruth
Inspection of protein-protein interaction maps illustrates that a hub protein can interact with a very large number of proteins, reaching tens and even hundreds. Since a single protein cannot interact with such a large number of partners at the same time, this presents a challenge: can we figure out which interactions can occur simultaneously and which are mutually excluded? Addressing this question adds a fourth dimension into interaction maps: that of time. Including the time dimension in structural networks is an immense asset; time dimensionality transforms network node-and-edge maps into cellular processes, assisting in the comprehension of cellular pathways and their regulation. While the time dimensionality can be further enhanced by linking protein complexes to time series of mRNA expression data, current robust, network experimental data are lacking. Here we outline how, using structural data, efficient structural comparison algorithms and appropriate datasets and filters can assist in getting an insight into time dimensionality in interaction networks; in predicting which interactions can and cannot co-exist; and in obtaining concrete predictions consistent with experiment. As an example, we present p53-linked processes.
MOLECULAR BIOSYSTEMS

Suggestions

Prediction of protein subcellular localization based on primary sequence data
Ozarar, M; Atalay, Mehmet Volkan; Atalay, Rengül (2004-04-30)
Subcellular localization is crucial for determining the functions of proteins. A system called prediction of protein subcellular localization (P2SL) that predicts the subcellular localization of proteins in eukaryotic organisms based on the amino acid content of primary sequences using amino acid order is designed. The approach for prediction is to find the most frequent motifs for each protein in a given class based on clustering via self organizing maps and then to use these most frequent motifs as featur...
Distance-based Indexing of Residue Contacts for Protein Structure Retrieval and Alignment
Sacan, Ahmet; Toroslu, İsmail Hakkı; Ferhatosmanoglu, Hakan (2008-10-10)
New protein structures are continuously being determined with the hope of deriving insights into the function and mechanisms of proteins, and consequently, protein structure repositories are growing by leaps and bounds. However, we are still far from having the right methods for sensitive and effective use of the available structural data. The fact that current structural analysis tools are impractical for large-scale applications have given rise to several approaches that try to quickly identify candidate ...
An attempt to classify Turkish district data : K-Means and Self-Organizing Map (SOM) algorithms
Aksoy, Ece; Işık, Oğuz; Department of Geodetic and Geographical Information Technologies (2004)
There is no universally applicable clustering technique in discovering the variety of structures display in data sets. Also, a single algorithm or approach is not adequate to solve every clustering problem. There are many methods available, the criteria used differ and hence different classifications may be obtained for the same data. While larger and larger amounts of data are collected and stored in databases, there is increasing the need for efficient and effective analysis methods. Grouping or classific...
Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro—Focus on Tau
Kiriş, Erkan; Feinstein, Stuart C. (Elsevier Science, 2010-05-01)
The regulation of microtubule growing and shortening dynamics is essential for proper cell function and viability, and microtubule-associated proteins (MAPs) such as the neural protein tau are critical regulators of these dynamic processes. Further, we and our colleagues have proposed that misregulation of microtubule dynamics may contribute to tau-mediated neuronal cell death and dementia in Alzheimer's and related diseases. In the first part of this chapter, we present a general background on microtubule ...
Architectures and functional coverage of protein-protein interfaces
Tunçbağ, Nurcan; Guney, Emre; NUSSINOV, Ruth; Keskin, Ozlem (2008-09-05)
The diverse range of cellular functions is performed by a limited number of protein folds existing in nature. One may similarly expect that cellular functional diversity would be covered by a limited number of protein-protein interface architectures. Here, we present 8205 interface clusters, each representing a unique interface architecture. This data set of protein-protein interfaces is analyzed and compared with older data sets. We observe that the number of both biological and crystal interfaces increase...
Citation Formats
N. Tunçbağ, A. Gursoy, O. Keskin, and R. Nussinov, “Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example,” MOLECULAR BIOSYSTEMS, pp. 1770–1778, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30681.