Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
PLGA bone plates reinforced with crosslinked PPF
Date
2002-02-01
Author
Hasırcı, Vasıf Nejat
Litman, AE
Trantolo, DJ
Gresser, JD
Wise, DL
Margolis, HC
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
In this study a matrix of poly(propylene fumarate) (PPF) was crosslinked with N-vinylpyrrolidone (NVP), 2-hydroxyethylmethacrylate (HEMA), or a mixture of NVP and ethyleneglycol dimethacrylate (EGDMA) in the presence of poly(lactide-co-glycolide) (PLGA) to reinforce and preserve the form of PLGA bone plates. The degree of crosslinkage varied depending on the crosslinker as shown by the rapid and almost complete leaching of NVP upon incubation in phosphate buffered saline at 37degrees C in 900 h and retention of 92% of HEMA. With the reinforced bone plates extracted for 72 h at room temperature methylene chloride, the extracted PLGA from NVP/PPF, NVP-EGDMA/PPF, and HEMA/PPF were 75.42% (w/w), 59.52% (w/w), and 30.86% (w/w), respectively. The flexural modulus and compressive strength of the crosslinked PPF reinforced bone plates were higher than that of the unreinforced bone plate. Atomic force microscopy showed that NVP/PPF reinforced PLGA bone plates eroded substantially (a mean surface roughness of 19.319 nm) whereas NVP-EGDMA-PPF reinforced bone plate showed a distinct crystalline organization (and a higher roughness, 43.525 nm). In conclusion, we propose the consideration of NVP-EGDMA/PPF reinforced PLGA as a biodegradable orthopedic implant material that has a lower likelihood of warping or failing catastrophically than the currently available materials. (C) 2002 Kluwer Academic Publishers.rid
Subject Keywords
Ethylene Glycol) Hydrogels
,
Scanning Force Microscopy
,
In-Vivo Degradation
,
Surface
,
Vitro
,
Biocompatibility
,
Polyethylene
,
Polymers
,
Fixation
,
Screws
URI
https://hdl.handle.net/11511/30769
Journal
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
DOI
https://doi.org/10.1023/a:1013877928988
Collections
Graduate School of Natural and Applied Sciences, Article