ClouDSS: A decision support system for cloud service selection

2017-01-01
Cloud computing brings in significant technical advantages and enables companies, especially small and medium size enterprises (SMEs), to eliminate up-front capital expenditures. This is due to the various benefits it provides, such as pay-as-you-go service model, flexibility of services, and on-demand accessibility. The proliferation of cloud services leads to their wide spread use and calls for comprehensive evaluation approaches in order to be able to choose the most suitable alternatives. To this end, existing studies in the literature generally provide solutions incorporating a single method for making such decisions. Therefore, this study proposes a more comprehensive solution in the form of a decision support system named as ClouDSS which employs various Multi-Criteria Decision Making (MCDM) methods with the aim of optimizing cloud service selection decisions. ClouDSS has a default decision model, which can be customized according to enterprise-specific requirements, for evaluating the suitability of cloud services with respect to business needs. After presenting the main components of ClouDSS, the employed cloud service selection process is described in order to highlight the associated tasks, including both objective and subjective evaluation approaches. Furthermore, the applicability of the proposed system is demonstrated through a case study.

Suggestions

CLOUDGEN: Workload generation for the evaluation of cloud computing systems CLOUDGEN: Bulut Bilişim Sistemlerinin Başarim Deǧerlendirmesi icin Iş Yuku Uretimi
Koltuk, Furkan; Yazar, Alper; Schmidt, Şenan Ece (2019-04-01)
In this paper, we propose CLOUDGEN workflow that produces synthetic workloads for Infrastructure and Platform as a Service for the evaluation of resource management approaches in cloud computing systems. To this end, CLOUDGEN systematically processes and clusters records in a given workload trace and fits distributions for different workload parameters within the clusters. Different than the previous work, clustering is carried out to produce different virtual machine types for achieving models that are sui...
Data science technology selection: development of a decision-making approach
Nazlıel, Kerem; Eren, Pekin Erhan; Kayabay, Kerem; Department of Information Systems (2022-12-29)
Developments in IT, Cloud, Analytics, and related fields have created an abundance of Data Science technologies for practitioners, developers, and organizations to use. This abundance and variety complicate the Data Science technology selection and management processes for the analytics teams. When teams select and use improper tools and technologies, they encounter problems and inefficiencies, also known as technical debt. As a remedy, this thesis proposes a systematic technology selection method consideri...
EPICS: A Framework for Enforcing Security Policies in Composite Web Services
Ranchal, Rohit; Bhargava, Bharat; Angın, Pelin; ben Othmane, Lotfi (Institute of Electrical and Electronics Engineers (IEEE), 2019-05-01)
With advances in cloud computing and the emergence of service marketplaces, the popularity of composite services marks a paradigm shift from single-domain monolithic systems to cross-domain distributed services, which raises important privacy and security concerns. Access control becomes a challenge in such systems because authentication, authorization and data disclosure may take place across endpoints that are not known to clients. The clients lack options for specifying policies to control the sharing of...
A Quality model for cloud-based enterprise information systems
Şener, Umut; Eren, Pekin Erhan; Department of Information Systems (2016)
Organizations have migrated from on-premise enterprise information systems to Cloud-based Enterprise Information Systems (Cloud-EIS) due to the benefits of cloud computing, such as flexibility, availability on demand, and interdependence in information technology infrastructure. Accordingly, enterprises perceive the significance of the quality of Cloud-EIS for improving their businesses, and they pay more attention to selecting the suitable Cloud-EIS. Having looked at the extensive literature, only a few re...
Hardware Accelerators for Cloud Computing: Features and Implementation
Tirlioglu, Anil; Demir, Omer Bayram; Yazar, Alper; Schmidt, Şenan Ece (2021-01-01)
In this paper, hardware accelerator (FHA) applications realized on FPGA that can be offered as a service in cloud computing systems are discussed. It is necessary to know the hardware resources used by FHA applications and the performance they provide for the efficient meeting of the user requests and effective resource planning. To this end, the first contribution of this paper is to provide a compilation of the literature on the features of frequently used hardware accelerators (matrix multiplication, fac...
Citation Formats
U. Şener, E. Gökalp, and P. E. Eren, “ClouDSS: A decision support system for cloud service selection,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30895.