Multifunctional periodontal membrane for treatment and regeneration purposes

2020-03-01
Periodontitis is a chronic inflammatory disease that causes gum tissue degeneration and alveolar bone and tooth loss. The aim of this study is to develop a multifunctional matrix for the treatment of periodontitis and enhancement of regeneration of the periodontal tissue. The matrix was prepared from vitamin E containing hydrogel made of alginate and gelatin, and doxycycline HCl containing methoxy poly(ethylene glycol)-block-polycaprolactone micelles. Methoxy poly(ethylene glycol)-block-polycaprolactone was synthesized with ring-opening polymerization technique and characterized by proton nuclear magnetic resonance (H-1 NMR), Fourier-transform infrared spectroscopy, differential scanning calorimetry, and gel permeation chromatography. Micelles were characterized by measuring zeta potential, hydrodynamic diameter, drug encapsulation efficiency, drug loading capacity, and in vitro drug-release kinetics. Micelles were obtained with an average size of 164 nm and drug loading amount of 5.8%. The activity of doxycycline HCl-loaded micelles and vitamin E containing hydrogels was determined against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with disk diffusion method. Bio-efficacy of micelle-loaded alginate-gelatin hydrogels were tested in vitro using L929 fibroblasts and dental pulp stem cells. Doxycycline HCl-loaded micelles and vitamin E containing hydrogels showed a sustained release and exhibited inhibition zone against E. coli and S. aureus. Hydrogels with vitamin E and doxycycline HCl-loaded micelles promoted osteogenic differentiation of dental pulp stem cells. Results suggest that alginate-gelatin hydrogels containing doxycycline HCl-loaded micelles and vitamin E can be good candidates for the treatment of periodontitis and tissue regeneration.
JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS

Suggestions

Tissue engineering of full-thickness human oral mucosa
Kınıkoğlu, Beste; Hasırcı, Vasıf Nejat; Damour, Odile; Department of Biotechnology (2010)
Tissue engineered human oral mucosa has the potential to fill tissue deficits caused by facial trauma or malignant lesion surgery. It can also help elucidate the biology of oral mucosa and serve as an alternative to in vivo testing of oral care products. The aim of this thesis was to construct a tissue engineered full-thickness human oral mucosa closely mimicking the native tissue. To this end, the feasibility of the concept was tested by co-culturing fibroblasts and epithelial cells isolated from normal hu...
Multiwalled Carbon Nanotube- Poly(2-Hydroxyethyl Methacrylate) Composite Conduitfor Peripheral Nerve Repair
Arslantunalı, Damla; Arslantunalı Şahin, Damla; Department of Biotechnology (2012)
There are different methods used in the surgical treatment of peripheral nerve injury. In this respect, end-to-end surgical reconnection of the damaged nerve ends or autologous nerve grafts are applied as soon as possible after the injury. When autologous tissue transplant is considered, there are some medical devices available generally for relatively short nerve defects. As a solution for this problem, different tissue engineered nerve conduits have been developed. In the current study, a pHEMA hydrogel m...
Genetic polymorphism of vitamin D3 metabolising cytochrome p450 (CYPS) enyzmes and risk of ischemic stroke in Turkish population
Öner, Tuğçe; Adalı, Orhan; Can Demirdöğen, Birsen; Department of Biochemistry (2015)
Stroke, as a neurological disorder, is defined as cessation or severe reduction of blood flow to the brain due to a clot or burst of blood vessel in the brain. Atherosclerosis is the hardening of the arteries due to accumulation of plaques in the vessels. Vitamin D deficiency is known as important risk factor in pathogenesis of atherosclerosis, which contributes to stroke development. Incidence of stroke is affected by environmental and genetic risk factors. So, genetic variations including single nucleotid...
Association analysis of cholesterol 7-alpha hydroxylase (CYP7A1)and cholesterol 24-hydroxlase (CYP46A1) genetic polymorphisms and multiple sclerosis risk in Turkish population
Sezer, Eda; Kaya, Zeki; Department of Molecular Biology and Genetics (2019)
Multiple Sclerosis (MS) is the most common demyelinating disorder of the central nervous system. Under the effects of certain environmental factors, MS develops in genetically susceptible individuals. People with MS have significantly lower vitamin D levels. UV-B radiation catalyzes the photo-conversion of 7-dehydrocholesterol, produced in cholesterol production pathway, to vitamin D in the skin. Cholesterol 7α-hydroxylase (CYP7A1) in the liver and Cholesterol 24S-hydroxylase (CYP46A1) in the brain are resp...
Genome-wide variation analysis of formalin fixed paraffin embedded pulmonary metastatic tumor samples of osteosarcoma patients
Nil, Zelha; Gündüz, Ufuk; Department of Biology (2012)
Osteosarcoma (OS) is a type of cancer that starts in the bone. It generally occurs in the cells called osteoblasts which form matrix of the bone. It is the most common malignant tumor of bone with an incidence rate of 19% among all cancer types. The vast majority of OS patients have pulmonary metastases at the time they are diagnosed, and about half develop lung disease later. Moreover, pulmonary metastatic tumors lead to poor prognosis and increased death rate. Although mutations in the genes coding for p5...
Citation Formats
G. Isik, N. Hasırcı, A. Tezcaner, and A. Kızıltay, “Multifunctional periodontal membrane for treatment and regeneration purposes,” JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, pp. 117–138, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31271.