Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes
Date
2012-12-15
Author
Yildirim, Emrah
Akay, Pinar
ARSLAN, YASİN
BAKIRDERE, Sezgin
Ataman, Osman Yavuz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
67
views
0
downloads
Cite This
Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H2Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H2Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60 s at 300 degrees C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution.
Subject Keywords
Tellurium
,
Hydride generation
,
Electrothermal atomic absorption spectrometry
,
Hydride trapping
,
Speciation analysis
URI
https://hdl.handle.net/11511/31390
Journal
TALANTA
DOI
https://doi.org/10.1016/j.talanta.2012.06.002
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Determination of germanium by AAS in chloride-containing matrices
Anwari, MA; Abbasi, HU; Volkan, Mürvet; Ataman, Osman Yavuz (1996-06-01)
Interference effects of NaCl on the ET-AAS determination of Ge have been studied. The use of several matrix modifiers to alleviate this problem such as Ni and Zn perchlorates and nitrates, nitric acid, ammonium nitrate are reported. The stabilizing effect of Zn and Ni perchlorates allows the use of high pretreatment temperatures. NaCl is thus thermally volatilized from the atomizer by employing pretreatment temperatures higher than 1500 degrees C resulting in an improved sensitivity. Germanium levels in zin...
Sorption of radioactive cesium and barium ions onto solid humic acid
Celebi, O.; Kilikli, A.; ERTEN, HASAN NİYAZİ (Elsevier BV, 2009-09-15)
In this study, the sorption behavior of two important fission product radionuclides ((137)Cs and (140)Ba) onto sodium form of insolubilized humic acid (INaA) were investigated as a function of time, cation concentration and temperature, utilizing the radiotracer method. The sorption processes are well described by both Freundlich and Dubinin-Radushkevich type isotherms. Thermodynamic constants such as: free energy (Delta G(ads)), enthalpy (Delta H(ads)), entropy (Delta S(ads)) of adsorption were determined....
Effect of nitric acid for equal stabilization and sensitivity of different selenium species in electrothermal atomic absorption spectrometry
Sahin, F; Volkan, Mürvet; Ataman, Osman Yavuz (2005-08-15)
Determination of selenium by electrothermal atomic absorption spectrometry (ETAAS) is complicated by the presence of different species of this analyte. The presence of different oxidation states (-II, IV and VI) may result in different sensitivities obtained for each species rendering impossible the use of a single species for calibration. These species also exhibit different behaviours regarding thermal stabilities; the temperature program must be provided to conform to this problem. Chemical modifiers are...
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-04-05)
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite (Pd(0)/SiO2-CoFe2O4) were in situ generated during the hydrolysis of ammonia borane, isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TEM-EDX, XPS and the N-2 adsorption-desorption techniques. All the results reveal that well dispersed palladium(0) nanoparticles were successfully supported on silica coated cobalt ferrite and the resulting Pd(0)/SiO2-CoFe2O4 are highly active, magnetica...
Cloud point preconcentration of germanium and determination by hydride generation atomic absorption spectrometry
Boyukbayram, AE; Volkan, Mürvet (2000-07-14)
Cloud point methodology has been successfully employed for the preconcentration of germanium at trace levels from aqueous samples prior to hydride generation flame atomic absorption spectrometry (HGAAS). Germanium was taken into complex with quercetin in aqueous non-ionic surfactant (Triton X-114) medium and concentrated in the surfactant rich phase by bringing the solution to the cloud point temperature (19 degrees C). The preconcentration of only 50 mi of solution with 0.1% Triton X-114 and 2 x 10(-5) M q...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Yildirim, P. Akay, Y. ARSLAN, S. BAKIRDERE, and O. Y. Ataman, “Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes,”
TALANTA
, pp. 59–67, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31390.