Hydroxyapatite nanorod-reinforced biodegradable poly(L-lactic acid) composites for bone plate applications

2011-11-01
Aydin, Erkin
Planell, Josep A.
Hasırcı, Vasıf Nejat
Novel PLLA composite fibers containing hydroxyapatite (HAp) nanorods with or without surface lactic acid grafting were produced by extrusion for use as reinforcements in PLLA-based bone plates. Fibers containing 0-50% (w/w) HAp nanorods, aligned parallel to fiber axis, were extruded. Lactic acid surface grafting of HAp nanorods (lacHAp) improved the tensile properties of composites fibers better than the non-grafted ones (nHAp). Best tensile modulus values of 2.59, 2.49, and 4.12 GPa were obtained for loadings (w/w) with 30% lacHAp, 10% nHAp, and 50% amorphous HAp nanoparticles, respectively. Bone plates reinforced with parallel rows of these composite fibers were molded by melt pressing. The best compressive properties for plates were obtained with nHAp reinforcement (1.31 GPa Young's Modulus, 110.3 MPa compressive strength). In vitro testing with osteoblasts showed good cellular attachment and spreading on composite fibers. In situ degradation tests revealed faster degradation rates with increasing HAp content. To our knowledge, this is the first study containing calcium phosphate-polymer nanocomposite fibers for reinforcement of a biodegradable bone plate or other such implants and this biomimetic design was concluded to have potential for production of polymer-based biodegradable bone plates even for load bearing applications.
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE

Suggestions

Co-doped hydroxyapatites as potential materials for biomedical applications
YILMAZ, BENGİ; ALSHEMARY, AMMAR ZEIDAN GHAILAN; Evis, Zafer (2019-01-01)
Hydroxyapatite (HA) is a synthetic biomaterial resembling the composition of mammalian hard tissue and thus, it is widely employed as a bone graft material, hard tissue engineering scaffold and coating layer for metallic substrates. Biological apatite is non-stoichiometric in nature. It is composed of small crystals and characterized by poor crystallinity and relatively high solubility with respect to stoichiometric HA. Chemical compositions of these crystals consist of Ca, P and trace amounts of various io...
Strontium doped calcium phosphate biomimetic coatings on Ti6Al4V plates
Avcı, Muhammed; Evis, Zafer; Göçmez, Hasan; Department of Biomedical Engineering (2015)
In this study, strontium was added into the structure of calcium phosphate and coated on Ti6Al4V plates with using biomimetic method. In order to form strontium doped calcium phosphate coatings, 2×SBF with strontium was made with adding SrCl2 while preparing normal 2×SBF. Ti6Al4V plates were used as substrates and their surfaces were abraded and oxidized with pretreatment. These plates were coated in pure (no Sr added), 0.15mM, 1mM and 5mM Sr added 2×SBF. Surface of the coated plates was characterized and a...
Hydroxyl-Terminated Poly(urethane acrylate) as a Soft Liner in Dental Applications: Synthesis and Characterization
Keskin, Selda; Usanmaz, Ali (Wiley, 2010-07-05)
Hydroxyl-terminated poly(urethane acrylate)s were synthesized for use in biomedical applications. Acrylate end capping via an interesterification reaction was successfully achieved with methacryloyl chloride addition to the hydroxyl ends of the polyurethane at low temperatures. 2,4-Toluene diisocyanate, 1,6-hexane diisocyanate, and methylene diphenyl diisocyanate were used as diisocyanates for urethane synthesis, and they were end-capped with methyl methacrylate and hydroxyethyl methacrylate. The nature of ...
Protein-based materials in load-bearing tissue-engineering applications
Sayin, Esen; Baran, Erkan Turker; Hasırcı, Vasıf Nejat (2014-01-01)
Proteins such as collagen and elastin are robust molecules that constitute nanocomponents in the hierarchically organized ultrastructures of bone and tendon as well as in some of the soft tissues that have load-bearing functions. In the present paper, the macromolecular structure and function of the proteins are reviewed and the potential of mammalian and non-mammalian proteins in the engineering of load-bearing tissue substitutes are discussed. Chimeric proteins have become an important structural biomater...
3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering
Jodati, Hossein; Evis, Zafer; Tezcaner, Ayşen; Alshemary, Ammar Z.; Motameni, Ali (2023-04-01)
Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties. T...
Citation Formats
E. Aydin, J. A. Planell, and V. N. Hasırcı, “Hydroxyapatite nanorod-reinforced biodegradable poly(L-lactic acid) composites for bone plate applications,” JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, pp. 2413–2427, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31523.