Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor

2010-01-01
Boran, Efe
Ozgur, Ebru
van der Burg, Job
Yucel, Meral
Gündüz, Ufuk
Eroglu, Inci
The purpose of this study was to develop a pilot scale tubular photo bioreactor (80 L) for photo fermentative hydrogen production by photosynthetic purple-non-sulfur bacterium, Rhodobacter capsulatus, operating in outdoor conditions, using acetate as the carbon source. The reactor was operated continuously in fed-batch mode for 30 days throughout December 2008 in Ankara. It was placed in a greenhouse in order to keep the temperature above freezing levels. It was found that R. capsulatus had a rapid growth with a specific growth rate of 0.025 h(-1) in the exponential phase. The growth was defined with modified logistic model for long term duration. The hydrogen production and feeding started in the late exponential phase. Evolved gas contained 99% hydrogen and 1% carbon dioxide by volume. The average molar productivity calculated during daylight hour was 0.31 mol H(2)/(m(3) h) with regard to the total reactor volume and 0.112 mol H(2)/(m(2).day) with regard to the total illuminated surface area. It was proven that even at low light intensities and low temperatures, the acetic acid which was fed to the system can be utilized for biosynthesis, growth and hydrogen production. The overall hydrogen yield was 0.6 mole H(2) per mole of acetic acid fed. This study showed that photofermentation in a pilot scale tubular photo bioreactor can produce hydrogen, even in winter conditions.
JOURNAL OF CLEANER PRODUCTION

Suggestions

Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent
Boran, Efe; Ozgur, Ebru; Yucel, Meral; Gündüz, Ufuk; Eroglu, Inci (2012-08-01)
The purpose of this study was to operate a pilot scale solar tubular photobioreactor (90 L) for photofermentative hydrogen production from thick juice dark fermenter effluent (DEE) by photosynthetic purple-non-sulfur bacterium, Rhodobacter capsulatus. The tubular photobioreactor was equipped with internal cooling tubes for effective temperature control, which is essential for stable, long-term operation. The photobioreactor was operated in fed-batch mode throughout September 2009 in Ankara, Turkey. R. capsu...
Biohydrogen production by Rhodobacter capsulatus Hup(-) mutant in pilot solar tubular photobioreactor
Boran, Efe; Ozgur, Ebru; Yucel, Meral; Gündüz, Ufuk; EROĞLU, İNCİ (2012-11-01)
In this study, a pilot solar tubular photobioreactor was successfully implemented for fed batch operation in outdoor conditions for photofermentative hydrogen production with Rhodobacter capsulatus (Hup(-)) mutant. The bacteria had a rapid growth with a specific growth rate of 0.052 h(-1) in the batch exponential phase and cell dry weight remained in the range of 1-1.5 g/L throughout the fed batch operation. The feeding strategy was to keep acetic acid concentration in the photobioreactor at the range of 20...
Hydrogen production properties of Rhodobacter capsulatus with genetically modified redox balancing pathways
Ozturk, Yavuz; Gokce, Abdulmecit; Peksel, Begum; Gurgan, Muazzez; Ozgur, Ebru; Gündüz, Ufuk; Eroglu, Inci; Yucel, Meral (2012-01-01)
Rhodobacter capsulatus produces molecular hydrogen under the photoheterotrophic growth condition with reduced carbon sources (organic acids). Under this condition, ubiquinol pool is over reduced and excess reducing equivalents are primarily consumed via the reduction of CO2 through the Calvin-Benson-Bassham (CBS) pathway, the dimethylsulfoxide reductase (DMSOR) system or by the reduction of protons into hydrogen gas with the use of nitrogenase to maintain a balanced intracellular oxidation-reduction potenti...
Hydrogen storage in magnesium based thin films
Akyıldız, Hasan; Öztürk, Tayfur; Özenbaş, Ahmet Macit; Department of Metallurgical and Materials Engineering (2010)
A study was carried out for the production of Mg-based thin films which can absorb and desorb hydrogen near ambient conditions, with fast kinetics. For this purpose, two deposition units were constructed; one high vacuum (HV) and the other ultra high vacuum (UHV) deposition system. The HV system was based on a pyrex bell jar and had two independent evaporation sources. The unit was used to deposit films of Mg, Mg capped with Pd and Au-Pd as well as Mg-Cu both in co-deposited and multilayered form within a t...
Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation
Ozcan, O.; Yukruk, F.; Akkaya, E. U.; Üner, Deniz (2007-02-15)
Perylene diimide based organic sensitizers capable of electron generation under illumination were used to initiate gas phase photo reduction reactions on TiO2 thin and thick film surfaces. For comparison [Ru(Bpy)(3)](2+) dye sensitizers were also studied. The photo reduction Of CO2 was carried out under static conditions in the gas phase. TiO2 films were coated on hollow glass beads via a sol-gel procedure. Pt was incorporated on the films either by adding the precursor salt in the sol, Pt(in), or by wet im...
Citation Formats
E. Boran, E. Ozgur, J. van der Burg, M. Yucel, U. Gündüz, and I. Eroglu, “Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor,” JOURNAL OF CLEANER PRODUCTION, pp. 0–0, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31878.