Thermal degradation of poly(vinylpyridine)s

2009-04-01
Elmaci, Ayşegül
Hacaloğlu, Jale
The thermal stability and the temperature at which maximum degradation yields are detected were quite similar for both poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP). However, considerable differences among the thermal degradation products of both polymers were detected indicating a correlation between the polymer structure and the degradation mechanism. Direct pyrolysis mass spectrometry analyses revealed that P2VP degrades via a complex degradation mechanism, yielding mainly pyridine, monomer, and protonated oligomers, whereas depolymerization of P4VP takes place in accordance with the general thermal behaviour of vinyl polymers. The complex thermal degradation behaviour for P2VP is associated with the position of the nitrogen atom in the pyridine ring, with sigma-effect.
Polymer Degradation and Stability

Suggestions

Pyrolysis of poly(phenylene vinylene)s with polycaprolactone side chains
Nur, Yusuf; Çolak, Demet; Cianga, Ioan; Yagci, Yusuf; Hacaloğlu, Jale (2008-05-01)
The thermal degradation characteristics of a new macromonomer poly(epsilon-caprolactone) with central 4,4'-dicarbaldehyde terphenyl moieties and poly(phenylene vinylene)s with well defined (E-caprolactone), (PPV/PCL) as lateral substituents were investigated via direct pyrolysis mass spectrometry. The unexpectedly high thermal stability of the macromonomer was attributed to intermolecular acetylation of benzaldehyde yielding a hemiacetal and causing a crosslinked structure during the pyrolysis. Increased th...
Thermal degradation of poly(2-vinylpyridine) copolymers
Orhan, Tugba; Hacaloğlu, Jale (2013-01-01)
The thermal degradation characteristics of block copolymers of poly(2-vinylpyridine) with polystyrene, PS-b-P2VP, polyisoprene, PI-b-P2VP and poly(methyl methacrylate), P2VP-b-PMMA, were investigated via pyrolysis mass spectrometry. DP-MS analyses indicated that the thermal degradation of each component of the copolymers, except P2VP-b-PMMA, occurred independently through the decomposition pathways proposed for the corresponding homopolymers. In case of P2VP-b-PMMA, significant decrease in the thermal stabi...
Pyrolysis of of poly(methy methacrylate) copolymers
Ozlem-Gundogdu, Suriye; Gurel, Evren Aslan; Hacaloğlu, Jale (2015-05-01)
In this work, thermal degradation of copolymers of poly(methy methacrylate) namely, poly(methyl methacrylate-co-n-butyl acrylate), P(MMA-co-nBu), poly(methyl methacrylate-co-n-benzyl methacrylate) P(MMA-co-BzMA, and poly(methyl methacrylate-co-isobornyl acrylate), P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. It was determined that whether an available gamma-H with respect to the carbonyl groups is present or not determines the thermal degradation mechanisms of polyacrylates and po...
Direct insertion mass spectrometric analysis of thermal degradation of poly(2-alkyl-2-oxazoline)
Atilkan, Nurcan; Nur, Yusuf; Hacaloğlu, Jale; Schlaad, Helmut (2012-05-14)
Direct pyrolysis mass spectrometry is applied to investigate the thermal behavior of poly(2-isopropyl-2-oxazoline) (PIPOX, a thermoresponsive polymer) and poly[2-(3-butenyl)-2-oxazoline] (PBOX, a clickable polymer). It is found that the thermal degradation of PIPOX is started by a loss of side chains. At slightly higher temperatures the degradation of the polymer backbone occurs by random chain scission processes. In the case of PBOX, vinyl polymerization of the side chains produces chains with variable the...
Direct pyrolysis mass spectrometry studies on thermal degradation characteristics of poly(phenylene vinylene) with well-defined PSt side chains
Nur, Y.; Çolak, Demet; Cianga, I.; Yagci, Y.; Hacaloğlu, Jale (2008-10-01)
Thermal degradation characteristics of a new macromonomer polystyrene with central 4,4'-dicarbaldehyde terphenyl moieties and poly(phenylene vinylene) with well-defined polystyrene (PPV/PSt) as lateral substituents were investigated via direct pyrolysis mass spectrometry. A slight increase in thermal stability of PSt was detected for (PPV/PSt) and attributed to higher thermal stability of PPV backbone. It was almost impossible to differentiate products due to the decomposition of PPV backbone from those pro...
Citation Formats
A. Elmaci and J. Hacaloğlu, “Thermal degradation of poly(vinylpyridine)s,” Polymer Degradation and Stability, pp. 738–743, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31920.