PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering

Alagoz, Ayse Selcen
Rodriguez-Cabello, Jose Carlos
Hasırcı, Vasıf Nejat
A bone tissue replacement with relevant anatomical size requires the production of 3D scaffolds, which in turn limits the mass transport of nutrients and oxygen to sustain cell survival. A viable vascular network is required to overcome this problem. However, this cannot be established immediately after the implantation of a scaffold. The aim of this study was to develop a 3D wet-spun bone tissue engineering scaffold, coated with an elastin-like recombinamer (ELR) peptide with an endothelial cell-attracting REDV-sequence to promote early vascularization. Scaffolds were produced using biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and an ELR was immobilized onto it after oxygen plasma treatment (PHBV-O-2-ELR-REDV). O-2 plasma treatment and ELR modification of the PHBV changed the wettability, topography, and composition of the surface. A moderately hydrophilic surface was obtained after oxygen plasma treatment and ELR-REDV coating with a contact angle of 66.63 +/- 0.77 degrees. The surface roughness decreased after plasma treatment from 343.4 to 160.0 nm and increased to 280.3 nm after ELR-REDV coating. FTIR-ATR showed amide I and amide II bonds after ELR-REDV coating showing that the coating was successful. Scaffolds were tested in vitro with rabbit bone marrow mesenchymal cells. ELR modification did not cause a significant difference in adhesion or proliferation compared to unmodified controls. On the other hand, ELR-modified scaffolds attracted a higher number of human umbilical vein endothelial cells (HUVECs) due to the REDV sequence. The Alamar Blue test and confocal laser scanning microscopy micrographs showed that HUVEC migration and attachment on PHBV-O-2-ELR-REDV scaffolds was around 2.5-fold higher than untreated PHBV scaffolds after 14 d. Plasma-treated scaffolds (PHBV-O-2) showed an increase in the number of adhered HUVECs due to increased surface wettability. It can, therefore, be suggested that PHBV-O-2 -ELR-REDV scaffolds have significant potential to induce early vascularization due to increased attractiveness for endothelial cells. This could alleviate the vascularization problem of 3D implants for bone tissue engineering.


Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells
Pekozer, Gorke Gurel; KÖSE, GAMZE; Hasırcı, Vasıf Nejat (2016-11-01)
Co-culture of bone forming cells and endothelial cells to induce pre-vascularization is one of the strategies used to solve the insufficient vascularization problem in bone tissue engineering attempts. In the study, primary cells isolated from 2 different tissues of the same animal, rat bone marrow stem cells (RBMSCs) and rat aortic endothelial cells (RAECs) were co-cultured to study the effects of co-culturing on both osteogenesis and angiogenesis. The formation of tube like structure in 2D culture was obs...
PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering
Malikmammadov, Elbay; Endoğan Tanır, Tuğba; Kızıltay, Aysel; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2018-01-01)
Scaffolds produced for tissue engineering applications are proven to be promising alternatives to be used in healing and regeneration of injured tissues and organs. In this study, porous and fibrous poly(epsilon-caprolactone) (PCL) scaffolds were prepared by wet spinning technique and modified by addition of tricalcium phosphate (TCP) and by immobilizing gelatin onto fibers. Meanwhile, gelatin microspheres carrying Ceftriaxone sodium (CS), a model antibiotic, were added onto the scaffolds and antimicrobial ...
Differential expressions and functions of phosphodiesterase enzymes in different regions of the rat heart
DERİCİ, MEHMET KÜRŞAT; SADİ, GÖKHAN; Cenik, Basar; Güray, Nülüfer Tülün; DEMİREL YILMAZ, EMİNE (Elsevier BV, 2019-02-05)
Phosphodiesterase enzymes (PDEs) are responsible for the adjustment of cyclic nucleotide levels. Alterations in PDE expressions in different tissues cause conflicts between functional and clinical effects of PDE inhibitors. Therefore, the aim of this study was to investigate the gene and protein expressions and the functional role of PDEs in atrium and ventricle of rat heart The expressions of PDEs were examined in cardiac intact tissues and enzymatically isolated cells. The effects of PDE1-5 inhibitors (vi...
Development of clinoptilolite/poly ε-caprolactone -polyethylene glycol - poly ε-caprolactone triblock copolymer based scaffolds for bone tissue engineering
Pazarçeviren, Ahmet Engin; Tezcaner, Ayşen; Keskin, Dilek; Department of Engineering Sciences (2016)
Bone tissue engineering mainly depends on the feasible substitutes with ability to regenerate damaged bone tissue. One of the applications in which bone tissue engineering mainly focuses on is the production of bone tissue scaffolds. These scaffolds are expected to be biocompatible, highly interconnective and porous to provide a niche for colonizing bone cells. In addition, bone tissue scaffolds should be mechanically strong enough to accommodate compression. Scaffolds should also be biodegradable to encour...
Ti6Al4V foams having nanotubular surfaces for orthopaedic applications
Izmir, Merve; Tufan, Yiğithan; Tan, Guher; Ercan, Batur (Wiley, 2019-07-26)
Despite the widespread use of Ti6Al4V in orthopaedics, the bioinert nature of this alloy limits its biological fixation with the bone tissue. To enhance its bone fixation, two different types of Ti6Al4V foams were fabricated, and their surfaces were modified zto possess nanofeatures. To prepare the foams, spherical- or irregular-shaped Ti6Al4V particles were used to form the backbones of the foams, while magnesium or carbamide powders were used as space holder agents. Once Ti6Al4V foams were fabricated, oxi...
Citation Formats
A. S. Alagoz, J. C. Rodriguez-Cabello, and V. N. Hasırcı, “PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering,” BIOMEDICAL MATERIALS, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: