A gradient-based morphological method to produce planar curve offsets

2015-09-01
Two-dimensional curve offsets have a wide application area ranging from manufacturing to medical imaging. To that end, this paper concentrates on two novel techniques to produce planar curve offsets. Both methods, which are based on mathematical morphology, employ the concept that the boundaries formed by a circular structuring element whose center moves across the points on a base curve comprise the entire offsets of the progenitor. The first technique titled IMOBS was introduced in our former paper and was shown to have superior properties in terms of its high accuracy, low computational complexity, and its ability to handle complex curves if compared to the techniques available in the literature. Consequently, an all-purpose algorithm titled AMOBS is introduced to enhance further the performance of the former technique by making good use of gradient information to find globally the most suitable candidate points in the boundary data set via grid search techniques. Thus, the new paradigm is demonstrated to overcome some of the problems (like orphan curve offsets) encountered in extreme cases. Both algorithms, which have similar attributes in terms of run-time complexity and memory cost, are comparatively tested via two experimental cases where most CAD/CAM packages fail to yield acceptable results.
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Suggestions

New morphological methods to generate two-dimensional curve offsets
Dölen, Melik; Yaman, Ulaş (2014-04-01)
For the purpose of generating 2D curve offsets used in 2.5D machining, four new methods based on morphological operations on different mathematical entities are presented in this paper. All of the methods, which lend themselves for parallel processing, exploit the idea that the boundaries formed by a circular structuring element whose center sweeps across the points on a generator/base curve comprise the entire offsets of the progenitor. The first approach, which is a carry-over from image processing, makes...
A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures
Dawood, T. A.; Shenoi, R. A.; Şahin, Melin (Elsevier BV, 2007-01-01)
Embedding FBG strain sensors within a GFRP sandwich composite material allows early detection of internal defects. However, the sensors need to survive the manufacturing process to provide this capability. Vacuum infusion is commonly used to manufacture GFRP sandwich composite materials but, it needs to be modified to accommodate the embedding process. A stage by stage procedure is demonstrated here to embed FBG strain sensors between the skin-core interface of a GFRP sandwich beam specimen using the vacuum...
A continuous path planning and updating algorithm based on Voronoi diagrams
Özcan, Melih; Yaman, Ulaş; Department of Mechanical Engineering (2020-8)
Coverage of an area is required for a large variety of robotics and manufacturing applications, such as environment monitoring, home cleaning, search and rescue operations, machining, delivery, additive manufacturing and even for 3D terrain reconstruction. In this work, we present a highly flexible algorithm that can be used for coverage and graph traversal. In addition to being applicable to diverse types of engineering problems, proposed method is advantageous to other algorithms, as it never turns around...
A Parametric Estimation Approach to Instantaneous Spectral Imaging
Öktem, Sevinç Figen; Davila, Joseph M (2014-12-01)
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging techn...
An alternate method to extract performance characteristics in dye sensitized solar cells
Ameri, Mohsen; Mohajerani, Ezzedin; Samavat, Feridoun; Raoufi, Meysam (2018-01-01)
Modeling the electrical properties of dye-sensitized solar cells (DSSCs) can fill the gap between the experimental and ideal performance observations for a reliable device diagnosis, design and optimization. The complex physical and chemical reactions between nanocrystalline semiconductor, electrolyte ions and dye molecules make their simulation an open issue to the researchers. Compared to the research works presented in literature, here, we provide a simpler, but more meaningful fit of current voltage cur...
Citation Formats
U. Yaman and M. Dölen, “A gradient-based morphological method to produce planar curve offsets,” INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, pp. 255–274, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32849.