A Synthetic Tympanic Membrane for Middle Ear Acoustic Sensor Tests of a Fully Implantable Cochlear Prosthesis

2018-07-09
Ashrafi, Parinaz
Akçakaya, Dilek Işık
A physical model of human Tympanic Membrane (TM), based on PDMS, as an easily accessible test platform for acoustic transducers was designed and fabricated. • A primitive ear canal simulator (TM holder) design was done using COMSOL FEA. • Vibration behavior of TM was tested with a Scanning Laser Doppler Vibrometer (SLDV). • Effect of an attached mass on the membrane was performed utilizing 32 mg and 57 mg accelerometers. • The model reproduced the basic vibrational characteristics of a human TM

Suggestions

AN AUTOMATIC MODE MATCHING SYSTEM FOR A HIGH Q-FACTOR MEMS GYROSCOPE USING A DECOUPLED PERTURBATION SIGNAL
Yesil, F.; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper reports a closed-loop controller system developed for in-run automatic matching of the drive and sense mode resonance frequencies of a MEMS gyroscope with a high quality factor (Q). This is achieved by injecting a perturbation signal to the quadrature cancellation loop, while keeping it decoupled from the angular rate control loop. The new controller is implemented in a CMOS ASIC together with the other sensor control loops, and it is verified to maintain matched-mode state under changing environ...
An Implantable Multichannel Digital Neural Recording System for a Micromachined Sieve Electrode
Akın, Tayfun; Bradley, R.M. (1995-06-29)
This paper reports the development of an implantable, fully integrated, single-chip, multichannel neural recording system, which is powered and communicated with using an RF telemetry link. The system allows recording of /spl plusmn/500/spl mu/V neural signals from axons regenerated through a micromachined silicon sieve electrode. These signals are amplified using on-chip 100Hz to 3.IkHz bandlimited amplifiers, multiplexed, and digitized with a low-power, high speed current-mode 8-bit ADC, and then transmit...
A Vibration Based Mechanical IR Detector and an IR Imaging Method Using The Same
Azgın, Kıvanç (Dünya Fikri Mülkiyet Teşkilatı, 2013)
The invention relates to a vibration based mechanical IR detector having one or more than one resonating pixel structure and an IR imaging method for measuring incoming IR radiation by means of mechanical resonance of the resonating pixels.
Design and characterization of a buckling-resistant perforated MEMS membrane under residual stress
Bozyigit, Mustafa Anil; Sahin, Asaf Behzat; Bayram, Barış (2020-05-01)
Micro Electro Mechanical Systems (MEMS) membranes are utilized as both transmitter and receiver in acoustic and ultrasound applications. Their operating frequency ranges are determined by their resonance frequencies. Thus, the resonance frequency estimation is one of the most critical parts of the membrane design. In this study, two perforated circular MEMS membranes are designed, microfabricated and characterized to get proper operation under residual stress since this stress might cause buckling of the me...
A Pulse-Width Modulated Cochlear Implant Interface Electronics with 513 μW Power Consumption
Yigit, Halil Andac; Ulusan, Hasan; Yüksel, Muhammed Berat; Chamanian, Salar; Çiftci, Berkay ; Koyuncuoglu, Aziz; Muhtaroglu, Ali; Külah, Haluk (2019-07-01)
The fully implantable cochlear implant (FICI) interface circuit proposed in this work senses sound harmonics from 8 different piezoelectric cantilever sensors, and generates pulse width modulated biphasic current outputs to stimulate the auditory neurons. Signals from the piezoelectric sensors are amplified, rectified, and sampled. The sampled voltage is held and converted to current by a novel logarithmic voltage-to-current converter. The current is then digitized with a current comparator to determine the...
Citation Formats
P. Ashrafi and D. I. Akçakaya, “A Synthetic Tympanic Membrane for Middle Ear Acoustic Sensor Tests of a Fully Implantable Cochlear Prosthesis,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34342.