# Duals of non-weakly regular bent functions are not weakly regular and generalization to plateaued functions

2020-06-01
It is known that the dual of a weakly regular bent function is again weakly regular. On the other hand, the dual of a nonweakly regular bent function may not even be a bent function. In 2013, cesmelioglu, Meidl and Pott pointed out that the existence of a non-weakly regular bent function having weakly regular bent dual is an open problem. In this paper, we prove that for an odd prime p and n is an element of Z+, if f : F-p(n)-> F-p is a non-weakly regular bent function such that its dual f* is bent, then f**(-x) = f(x), and f* is non-weakly regular, which solves the open problem. We also generalize our results to plateaued functions.
FINITE FIELDS AND THEIR APPLICATIONS

# Suggestions

 Bent and semibent functions via linear translators Koçak, Neşe; Mesnager, Sihem; Özbudak, Ferruh (null; 2015-12-17) The paper is dealing with two important subclasses of plateaued functions: bent and semi-bent functions. In the first part of the paper, we construct mainly bent and semi-bent functions in the Maiorana-McFarland class using Boolean functions having linear structures (linear translators) systematically. Although most of these results are rather direct applications of some recent results, using linear structures (linear translators) allows us to have certain flexibilities to control extra properties of these ...
 Monotone positive solutions for a class of second-order nonlinear differential equations Ertem, T.; Zafer, Ağacık (Elsevier BV, 2014-03-15) It is shown that the second-order nonlinear differential equation
 Some maximal function fields and additive polynomials GARCİA, Arnaldo; Özbudak, Ferruh (Informa UK Limited, 2007-01-01) We derive explicit equations for the maximal function fields F over F-q(2n) given by F = F-q(2n) (X, Y) with the relation A(Y) = f(X), where A(Y) and f(X) are polynomials with coefficients in the finite field F-q(2n), and where A(Y) is q- additive and deg(f) = q(n) + 1. We prove in particular that such maximal function fields F are Galois subfields of the Hermitian function field H over F-q(2n) (i.e., the extension H/F is Galois).
 On the deformation chirality of real cubic fourfolds Finashin, Sergey (Wiley, 2009-09-01) According to our previous results, the conjugacy class of the involution induced by the complex conjugation in the homology of a real non-singular cubic fourfold determines the fourfold tip to projective equivalence and deformation. Here, we show how to eliminate the projective equivalence and obtain a pure deformation classification, that is, how to respond to the chirality problem: which cubics are not deformation equivalent to their image under a mirror reflection. We provide an arithmetical criterion of...
 Characterisation and enumeration of a class of semi bent quadratic Boolean functions KOÇAK, Neşe; Koçak, Onur Ozan; Özbudak, Ferruh; SAYGI, ZÜLFÜKAR (2015-01-01) In this paper, we consider semi-bentness of quadratic Boolean functions defined for even n and give the characterisation of these functions. Up to our knowledge, semi-bentness of this class has not been investigated before and we proved that semi-bent functions of this form exist only for 6|n. Furthermore, we present a method for enumeration of semi-bent and bent functions in certain classes. Using this method we find the exact number of semi-bent functions of this form. Moreover, we complete some previous ...
Citation Formats
F. Özbudak, “Duals of non-weakly regular bent functions are not weakly regular and generalization to plateaued functions,” FINITE FIELDS AND THEIR APPLICATIONS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34526. 