Infinite dimensional radial basis function neural networks for nonlinear transformations on function spaces

1997-12-01

Suggestions

Mobile Robot Heading Adjustment Using Radial Basis Function Neural Networks Controller and Reinforcement Learning
BAYAR, GÖKHAN; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2008-10-28)
This paper proposes radial basis function neural networks approach to the Solution of a mobile robot heading adjustment using reinforcement learning. In order to control the heading of the mobile robot, the neural networks control system have been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of strength. It has been achieved that neural networks system can learn the relationship between the desired directional heading and the error posi...
Temporal and spatial forecasting of the foF2 values up to twenty four hours in advance
Tulunay, E; Ozkaptan, C; Tulunay, Yurdanur (2000-01-01)
Radio waves of a wide range of frequencies from very low frequency (VLF) to high frequency (HF), (broadly 3 to 30 MHz) can be propagated to great distances via the ionosphere.
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Control of a differentially driven mobile robot using radial basis function based neural networks
Bayar, Gökhan; Konukseven, Erhan İlhan; Buǧra Koku, A. (2008-12-01)
This paper proposes the use of radial basis function neural networks approach to the solution of a mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the mobile robot, a neural network control system has been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of award. Making use of the potential of neural networks to learn the relationships, the desired reference orientation and the error...
Dynamic gait pattern generation with reinforcement learning
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (2005-01-01)
This paper presents the gait pattern generation work performed for the sixlegged robot EA308 developed in our laboratory. The aim is to achieve a dynamically developing gait pattern generation structure using reinforcement learning. For the six legged robot a simplified simulative model is constructed. The algorithm constructs a radial basis function neural network (RBFNN) to command proper leg configurations to the simulative robot. The weights of the RBFNN are learned using reinforcement learning. The dev...
Citation Formats
M. K. Leblebicioğlu, “Infinite dimensional radial basis function neural networks for nonlinear transformations on function spaces,” NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, pp. 1649–1654, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34652.