Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Infinite dimensional radial basis function neural networks for nonlinear transformations on function spaces
Date
1997-12-01
Author
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
100
views
0
downloads
Cite This
Subject Keywords
Neural network
,
Radial basis function neural networks
,
Nonlinear transformations
,
Infinite-dimensional function spaces
URI
https://hdl.handle.net/11511/34652
Journal
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
DOI
https://doi.org/10.1016/s0362-546x(96)00268-4
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Mobile Robot Heading Adjustment Using Radial Basis Function Neural Networks Controller and Reinforcement Learning
BAYAR, GÖKHAN; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2008-10-28)
This paper proposes radial basis function neural networks approach to the Solution of a mobile robot heading adjustment using reinforcement learning. In order to control the heading of the mobile robot, the neural networks control system have been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of strength. It has been achieved that neural networks system can learn the relationship between the desired directional heading and the error posi...
Temporal and spatial forecasting of the foF2 values up to twenty four hours in advance
Tulunay, E; Ozkaptan, C; Tulunay, Yurdanur (2000-01-01)
Radio waves of a wide range of frequencies from very low frequency (VLF) to high frequency (HF), (broadly 3 to 30 MHz) can be propagated to great distances via the ionosphere.
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Control of a differentially driven mobile robot using radial basis function based neural networks
Bayar, Gökhan; Konukseven, Erhan İlhan; Buǧra Koku, A. (2008-12-01)
This paper proposes the use of radial basis function neural networks approach to the solution of a mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the mobile robot, a neural network control system has been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of award. Making use of the potential of neural networks to learn the relationships, the desired reference orientation and the error...
Dynamic gait pattern generation with reinforcement learning
Erden, Mustafa Suphi; Leblebicioğlu, Mehmet Kemal (2005-01-01)
This paper presents the gait pattern generation work performed for the sixlegged robot EA308 developed in our laboratory. The aim is to achieve a dynamically developing gait pattern generation structure using reinforcement learning. For the six legged robot a simplified simulative model is constructed. The algorithm constructs a radial basis function neural network (RBFNN) to command proper leg configurations to the simulative robot. The weights of the RBFNN are learned using reinforcement learning. The dev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. K. Leblebicioğlu, “Infinite dimensional radial basis function neural networks for nonlinear transformations on function spaces,”
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
, pp. 1649–1654, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34652.