Performance of rubble mound breakwaters under tsunami attack, a case study: Haydarpasa Port, Istanbul, Turkey

Arikawa, Taro
Oei, Takayuki
Yalçıner, Ahmet Cevdet
Ports are one of the most vulnerable coastal utilities in case of marine natural hazards such as tsunamis and need to be protected against their devastating effects. Thus, studying the effects of tsunamis on protective structures such as breakwaters is critical. The Sea of Marmara is a part of an active earthquake zone that has generated tsunamis in the history. In terms of population density, coastal utilization, and economic potential, Marmara coastline seems most vulnerable to marine hazards. The availability of natural stones allows for wide use of rubble mound breakwaters as coastal protective structures in Turkey. The stability of these types of structures under the attack of storm waves has already been studied. However, their stability and performance under the effect of long waves and tsunami attacks have not yet been studied experimentally. The present study is a case study focusing on Haydarpasa Port, located at the southern entrance of Istanbul Bosphorus Strait (North coast of the Sea of Marmara). It aims to investigate the performance level of the port in case of tsunami attack. Physical model experiments were conducted in the 105-m long wave flume in the Port and Airport Research Institute (PARI), Japan, with a Froude-type length scale of 1/30. The experiments conducted to test the stability of rubble mound breakwater were twofold: (i) solitary wave experiments and (ii) tsunami overflow experiments. The heights of incoming tsunami waves were selected from results of simulations were conducted in the same region (Oyo Int. Co., 2007; Ayca, 2012; Yalciner et al., 2014; Guler et al., 2014; Aytore, 2015). First, the incoming solitary wave heights were selected as 5, 7.5, and 10 cm. Using the overflow heights obtained from solitary wave experiments, i.e., wave height at the top of crown wall when the solitary waves are overtopping the crown wall, tsunami overflow experiments were conducted ranging from an overflow height of 1.1 cm to 4.6 cm. Results of these experiments showed that Haydarpasa Breakwater, especially the crown wall of the breakwater, is not stable under a moderate tsunami attack. Therefore, an improved cross section was also tested under the same conditions, and the improvement proved successful.


Initial stage of database development for tsunami warning system along Turkish coasts
Onat, Yaprak; Yalçıner, Ahmet Cevdet (2013-12-01)
The highly active seismic potential of Eastern Mediterranean raises a question about risk mitigation when a possible tsunami hits the coastline. A proper risk mitigation plan and tsunami assessment can be achieved by creating a fully detailed database. In this study, 38 scenarios created using this database on bathymetric and topographic data in sufficient resolution using valid and verified numerical tool called NAMI DANCE, helps us to understand the tsunami generation, propagation, coastal inundation aide...
Database development for tsunami information system /
Özdemir, Koray Kaan; Yalçıner, Ahmet Cevdet; Department of Civil Engineering (2014)
Tsunamis are believed to be one of the natural enemies of human kind and evolution as the damage it gives at the shores can be described as lethal in means of loss of lives, tangible damage to the economy and concrete living on the shore, threat to health in variety of sicknesses after drawdown of water. Since this phenomena has been lethal lately even in a country like Japan which was prepared for any fatal earthquakes and tsunamis, it is in great importance to use the technology and history in accordance ...
Possible worst-case tsunami scenarios around the Marmara Sea from combined earthquake and landslide sources
Latcharote, Panon; Suppasri, Anawat; Imamura, Fumihiko; Aytore, Betul; Yalçıner, Ahmet Cevdet (2016-12-01)
This study evaluates tsunami hazards in the Marmara Sea from possible worst-case tsunami scenarios that are from submarine earthquakes and landslides. In terms of fault-generated tsunamis, seismic ruptures can propagate along the North Anatolian Fault (NAF), which has produced historical tsunamis in the Marmara Sea. Based on the past studies, which consider fault-generated tsunamis and landslide-generated tsunamis individually, future scenarios are expected to generate tsunamis, and submarine landslides cou...
Development of a Web GIS tsunami inundation mapping service
Ayça, Aykut; Yalçıner, Ahmet Cevdet; Department of Civil Engineering (2012)
Tsunamis, as the catastrophic disasters, can cause loss of live and property when they come to the shores. Preparation of emergency plans is essential to reduce the damage. Consequently, any initiative in tsunami modeling and inundation mapping is of vital importance for progressing safety surveillance and maintenance. In an effort to achieve a thorough analysis of effect of tsunami, it is critical to estimate the geographical extent of possibly affected area and to predict tsunami impacts. The inundation m...
Tsunami action on coasts and constructions
Tsunamis are high-impact, long-lasting disasters, which in most cases allow for only a few minutes of warning before impact. The amount of energy behind huge tsunami waves can cause severe destruction when it hits land and consequently causes massive loss of human life. The impact of tsunami can be considered in social, environmental, and economic dimensions. The social impact can be seen in destruction of life and property, health crisis and disease. Tsunamis may cause massive environmentally impact by dev...
Citation Formats
H. G. GÜLER, T. Arikawa, T. Oei, and A. C. Yalçıner, “Performance of rubble mound breakwaters under tsunami attack, a case study: Haydarpasa Port, Istanbul, Turkey,” COASTAL ENGINEERING, pp. 43–53, 2015, Accessed: 00, 2020. [Online]. Available: