Gravity waves in three dimensions

Download
2015-10-06
GÜRSES, METİN
Sisman, Tahsin Cagri
Tekin, Bayram
We find the explicit forms of the anti-de Sitter plane, anti-de Sitter spherical, and pp waves that solve both the linearized and exact field equations of the most general higher derivative gravity theory in three dimensions. As a subclass, we work out the six-derivative theory and the critical version of it where the masses of the two spin-2 excitations vanish and the spin-0 excitations decouple.
PHYSICAL REVIEW D

Suggestions

Anti-de Sitter-Wave Solutions of Higher Derivative Theories
GÜRSES, METİN; Hervik, Sigbjorn; Sisman, Tahsin Cagri; Tekin, Bayram (American Physical Society (APS), 2013-09-05)
We show that the recently found anti-de Sitter (AdS)-plane and AdS-spherical wave solutions of quadratic curvature gravity also solve the most general higher derivative theory in D dimensions. More generally, we show that the field equations of such theories reduce to an equation linear in the Ricci tensor for Kerr-Schild spacetimes having type-N Weyl and type-N traceless Ricci tensors.
Singular potentials and moving boundaries in 3D
Yuce, C (Elsevier BV, 2004-02-16)
In this Letter, the problem of a spinless particle under the time-dependent harmonic oscillator potential and a singular potential with a moving boundary is studied in the spherical coordinates. Some transformations are used to transform the moving boundary conditions to the fixed boundary conditions. An exact solution is constructed.
Gravitational interactions in 2+1 dimensions
Dereli, Tekin; Tucker, Robin W. (IOP Publishing, 1988-7-1)
Modifications to Einstein's vacuum equations for gravitation in 2+1 dimensions are studied. The addition of the Schouten-Eisenhart 2-forms to the field equations admits gravitational wave solutions although no non-trivial static rotationally symmetric metrics exist. Higher-order derivative models for the metric are discussed together with a 2+1 Brans-Dicke theory. The latter is solved for a static metric exhibiting singularities.
EXACT SPIN AND PSEUDO-SPIN SYMMETRIC SOLUTIONS OF THE DIRAC-KRATZER PROBLEM WITH A TENSOR POTENTIAL VIA LAPLACE TRANSFORM APPROACH
Arda, Altug; Sever, Ramazan (2012-09-28)
Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different p...
Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (Elsevier BV, 2011-09-14)
Under the conditions of the pseudospin and spin symmetry, approximate analytical solutions of the Dirac-Morse problem with Coulomb-like tensor potential are presented. The energy eigenvalue equations are found and corresponding radial wave functions are obtained in terms of confluent hypergeometric functions. The energy eigenvalues are calculated numerically in the absence and presence of the tensor potential. We also investigate the contribution of the potential parameters to the energy splitting of the ps...
Citation Formats
M. GÜRSES, T. C. Sisman, and B. Tekin, “Gravity waves in three dimensions,” PHYSICAL REVIEW D, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35301.