Mott transition in a two-leg Bose-Hubbard ladder under an artificial magnetic field

Download
2015-01-01
We consider the Bose-Hubbard model on a two-leg ladder under an artificial magnetic field and investigate the superfluid-to-Mott insulator transition in this setting. Recently, this system has been experimentally realized [M. Atala et al., Nature Phys. 10, 588 (2014)], albeit in a parameter regime that is far from the Mott transition boundary. Depending on the strength of the magnetic field, the single-particle spectrum has either a single ground state or two degenerate ground states. The transition between these two phases is reflected in the many-particle properties. We first investigate these phases through the Bogoliubov approximation in the superfluid regime and calculate the transition boundary for weak interactions. For stronger interactions the system is expected to form a Mott insulator. We calculate the Mott transition boundary as a function of the magnetic field and interleg coupling with mean-field theory, strong-coupling expansion, and density matrix renormalization group (DMRG). Finally, using the DMRG, we investigate the particle-hole excitation gaps of this system at different filling factors and find peaks at simple fractions, indicating the possibility of correlated phases.
PHYSICAL REVIEW A

Suggestions

Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Numerical simulations of thermal convection under the influence of an inclined magnetic field by using solenoidal bases
Yarimpabuc, D.; Tarman, Işık Hakan; Yildirim, C. (2014-11-01)
The effect of an inclined homogeneous magnetic field on thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal (divergence-free) basis functions satisfying the boundary conditions for both the velocity and the induced magnetic field. Thus, the divergence-free conditions for both velocity and magnetic field are satisfied exactly. The expansion ba...
Numerical Modeling of Electromagnetic Scattering from Periodic Structures by Transformation Electromagnetics
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-09-22)
The transformation electromagnetics is applied to the modeling of electromagnetic scattering from periodic structures in conjunction with the finite element method with periodic boundary conditions. In a unit cell of periodic structure, a uniform mesh is used over a flat surface and the arbitrary periodic surface is modeled by a coordinate transformation. The major advantage of this approach is that arbitrary geometries can be handled by using a single and simple mesh. Therefore, repeated computations (such...
CHAOTIC ELECTRON TRAJECTORIES IN ELECTROMAGNETIC WIGGLER FREE-ELECTRON LASER WITH A GUIDE MAGNETIC-FIELD
BILIKMEN, S; OMAR, A (Springer Science and Business Media LLC, 1994-05-01)
The Hamiltonian for an electron travelling through a large-amplitude backward electromagnetic wave, an axial guide magnetic field and radiation field is formulated. Poincare surface-of-section plots show that this Hamiltonian is non-integrable, and leads to chaotic trajectories. Equilibrium conditions are derived in the limit where the radiation field approaches zero. Compared to conventional FEL, the total energy of the system at pondermotive resonance E(c) is large, while the electron's critical energy...
Numerical solutions of boundary value problems; applications in ferrohydrodynamics and magnetohydrodynamics
Şenel, Pelin; Tezer, Münevver; Department of Mathematics (2017)
In this thesis, steady, laminar, fully developed flows in pipes subjected to a point magnetic source or uniform magnetic field are simulated by the dual reciprocity boundary element method (DRBEM). The Navier-Stokes and energy equations are solved in terms of the velocity, pressure and the temperature of the fluid which are all of the original variables of the problem. The missing pressure equation is derived and pressure boundary conditions are generated by a finite difference approximation and the DRBEM c...
Citation Formats
A. Keleş, “Mott transition in a two-leg Bose-Hubbard ladder under an artificial magnetic field,” PHYSICAL REVIEW A, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35403.